Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from transformers import pipeline | |
import requests | |
import csv | |
import time | |
import re | |
from bs4 import BeautifulSoup | |
import pandas as pd | |
from selenium import webdriver | |
from selenium.webdriver.chrome.options import Options | |
import chromedriver_autoinstaller | |
import os | |
import nltk | |
import numpy as np | |
import tflearn | |
import tensorflow | |
import random | |
import json | |
import pickle | |
import gradio as gr | |
from nltk.tokenize import word_tokenize | |
from nltk.stem.lancaster import LancasterStemmer | |
# Ensure necessary NLTK resources are downloaded | |
nltk.download('punkt') | |
# Initialize the stemmer | |
stemmer = LancasterStemmer() | |
# Load intents.json | |
try: | |
with open("intents.json") as file: | |
data = json.load(file) | |
except FileNotFoundError: | |
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.") | |
# Load preprocessed data from pickle | |
try: | |
with open("data.pickle", "rb") as f: | |
words, labels, training, output = pickle.load(f) | |
except FileNotFoundError: | |
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.") | |
# Build the model structure | |
net = tflearn.input_data(shape=[None, len(training[0])]) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, len(output[0]), activation="softmax") | |
net = tflearn.regression(net) | |
# Load the trained model | |
model = tflearn.DNN(net) | |
try: | |
model.load("MentalHealthChatBotmodel.tflearn") | |
except FileNotFoundError: | |
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.") | |
# Function to process user input into a bag-of-words format | |
def bag_of_words(s, words): | |
bag = [0 for _ in range(len(words))] | |
s_words = word_tokenize(s) | |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words] | |
for se in s_words: | |
for i, w in enumerate(words): | |
if w == se: | |
bag[i] = 1 | |
return np.array(bag) | |
# Chat function | |
def chat(message, history): | |
history = history or [] | |
message = message.lower() | |
try: | |
# Predict the tag | |
results = model.predict([bag_of_words(message, words)]) | |
results_index = np.argmax(results) | |
tag = labels[results_index] | |
# Match tag with intent and choose a random response | |
for tg in data["intents"]: | |
if tg['tag'] == tag: | |
responses = tg['responses'] | |
response = random.choice(responses) | |
break | |
else: | |
response = "I'm sorry, I didn't understand that. Could you please rephrase?" | |
except Exception as e: | |
response = f"An error occurred: {str(e)}" | |
history.append((message, response)) | |
return history, history | |
# Load tokenizer and model for sentiment analysis | |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
# Google Places API endpoint | |
url = "https://maps.googleapis.com/maps/api/place/textsearch/json" | |
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json" | |
# Your actual Google API Key (replace with your key) | |
api_key = "AIzaSyCcfJzMFfuv_1LN7JPTJJYw_aS0A_SLeW0" # Replace with your own Google API key | |
# Search query for wellness professionals in Hawaii | |
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath in Hawaii" | |
# Approximate latitude and longitude for Hawaii (e.g., Oahu) | |
location = "21.3,-157.8" # Center of Hawaii (Oahu) | |
radius = 50000 # 50 km radius | |
# Install Chrome and Chromedriver | |
def install_chrome_and_driver(): | |
# Install Chrome (if not already installed) | |
os.system("apt-get update") | |
os.system("apt-get install -y wget curl") | |
os.system("wget -q https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb") | |
os.system("dpkg -i google-chrome-stable_current_amd64.deb") | |
os.system("apt-get install -y -f") | |
os.system("google-chrome-stable --version") | |
# Install Chromedriver (if not already installed) | |
chromedriver_autoinstaller.install() | |
install_chrome_and_driver() | |
# Function to send a request to Google Places API and fetch places data | |
def get_places_data(query, location, radius, api_key, next_page_token=None): | |
params = { | |
"query": query, | |
"location": location, | |
"radius": radius, | |
"key": api_key | |
} | |
if next_page_token: | |
params["pagetoken"] = next_page_token | |
response = requests.get(url, params=params) | |
if response.status_code == 200: | |
return response.json() | |
else: | |
return None | |
# Function to fetch detailed information for a specific place using its place_id | |
def get_place_details(place_id, api_key): | |
details_url = places_details_url | |
params = { | |
"place_id": place_id, | |
"key": api_key | |
} | |
response = requests.get(details_url, params=params) | |
if response.status_code == 200: | |
details_data = response.json().get("result", {}) | |
return { | |
"opening_hours": details_data.get("opening_hours", {}).get("weekday_text", "Not available"), | |
"reviews": details_data.get("reviews", "Not available"), | |
"phone_number": details_data.get("formatted_phone_number", "Not available"), | |
"website": details_data.get("website", "Not available") | |
} | |
else: | |
return {} | |
# Scrape website URL from Google Maps results (using Selenium) | |
def scrape_website_from_google_maps(place_name): | |
chrome_options = Options() | |
chrome_options.add_argument("--headless") | |
chrome_options.add_argument("--no-sandbox") | |
chrome_options.add_argument("--disable-dev-shm-usage") | |
driver = webdriver.Chrome(options=chrome_options) | |
search_url = f"https://www.google.com/maps/search/{place_name.replace(' ', '+')}" | |
driver.get(search_url) | |
time.sleep(5) | |
try: | |
website_element = driver.find_element_by_xpath('//a[contains(@aria-label, "Visit") and contains(@aria-label, "website")]') | |
website_url = website_element.get_attribute('href') | |
except: | |
website_url = "Not available" | |
driver.quit() | |
return website_url | |
# Scraping the website to extract phone number or email | |
def scrape_website_for_contact_info(website): | |
phone_number = "Not available" | |
email = "Not available" | |
try: | |
response = requests.get(website, timeout=5) | |
soup = BeautifulSoup(response.content, 'html.parser') | |
phone_match = re.search(r'\(?\+?[0-9]*\)?[0-9_\- \(\)]*', soup.get_text()) | |
if phone_match: | |
phone_number = phone_match.group() | |
email_match = re.search(r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}', soup.get_text()) | |
if email_match: | |
email = email_match.group() | |
except Exception as e: | |
print(f"Error scraping website {website}: {e}") | |
return phone_number, email | |
# Function to fetch all places data including pagination | |
def get_all_places(query, location, radius, api_key): | |
all_results = [] | |
next_page_token = None | |
while True: | |
data = get_places_data(query, location, radius, api_key, next_page_token) | |
if data: | |
results = data.get('results', []) | |
if not results: | |
break | |
for place in results: | |
place_id = place.get("place_id") | |
name = place.get("name") | |
address = place.get("formatted_address") | |
rating = place.get("rating", "Not available") | |
business_status = place.get("business_status", "Not available") | |
user_ratings_total = place.get("user_ratings_total", "Not available") | |
website = place.get("website", "Not available") | |
types = ", ".join(place.get("types", [])) | |
location = place.get("geometry", {}).get("location", {}) | |
latitude = location.get("lat", "Not available") | |
longitude = location.get("lng", "Not available") | |
details = get_place_details(place_id, api_key) | |
phone_number = details.get("phone_number", "Not available") | |
if phone_number == "Not available" and website != "Not available": | |
phone_number, email = scrape_website_for_contact_info(website) | |
else: | |
email = "Not available" | |
if website == "Not available": | |
website = scrape_website_from_google_maps(name) | |
all_results.append([name, address, phone_number, rating, business_status, | |
user_ratings_total, website, types, latitude, longitude, | |
details.get("opening_hours", "Not available"), | |
details.get("reviews", "Not available"), email]) | |
next_page_token = data.get('next_page_token') | |
if not next_page_token: | |
break | |
time.sleep(2) | |
else: | |
break | |
return all_results | |
# Function to save results to CSV file | |
def save_to_csv(data, filename): | |
with open(filename, mode='w', newline='', encoding='utf-8') as file: | |
writer = csv.writer(file) | |
writer.writerow([ | |
"Name", "Address", "Phone", "Rating", "Business Status", | |
"User Ratings Total", "Website", "Types", "Latitude", "Longitude", | |
"Opening Hours", "Reviews", "Email" | |
]) | |
writer.writerows(data) | |
print(f"Data saved to {filename}") | |
# Main function to execute script | |
def main(): | |
google_places_data = get_all_places(query, location, radius, api_key) | |
if google_places_data: | |
save_to_csv(google_places_data, "wellness_professionals_hawaii.csv") | |
else: | |
print("No data found.") | |
# Gradio UI setup | |
with gr.Blocks() as demo: | |
# Display header | |
gr.Markdown("# Emotion Detection and Well-Being Suggestions") | |
# User input for text (emotion detection) | |
user_input_emotion = gr.Textbox(lines=1, label="How are you feeling today?") | |
# Model prediction for emotion detection | |
def predict_emotion(text): | |
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) | |
result = pipe(text) | |
emotion = result[0]['label'] | |
return emotion | |
user_input_emotion.change(predict_emotion, inputs=user_input_emotion, outputs=gr.Textbox(label="Emotion Detected")) | |
# Provide suggestions based on the detected emotion | |
def show_suggestions(emotion): | |
if emotion == 'joy': | |
return "You're feeling happy! Keep up the great mood!\nUseful Resources:\n[Relaxation Techniques](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)\n[Dealing with Stress](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)" | |
elif emotion == 'anger': | |
return "You're feeling angry. It's okay to feel this way. Let's try to calm down.\nUseful Resources:\n[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n[Stress Management Tips](https://www.health.harvard.edu/health-a-to-z)\n[Dealing with Anger](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/MIc299Flibs)" | |
elif emotion == 'fear': | |
return "You're feeling fearful. Take a moment to breathe and relax.\nUseful Resources:\n[Mindfulness Practices](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)\n[Coping with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/yGKKz185M5o)" | |
elif emotion == 'sadness': | |
return "You're feeling sad. It's okay to take a break.\nUseful Resources:\n[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n[Dealing with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/-e-4Kx5px_I)" | |
elif emotion == 'surprise': | |
return "You're feeling surprised. It's okay to feel neutral!\nUseful Resources:\n[Managing Stress](https://www.health.harvard.edu/health-a-to-z)\n[Coping Strategies](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)" | |
emotion_output = gr.Textbox(label="Emotion Detected") | |
emotion_output.change(show_suggestions, inputs=emotion_output, outputs=gr.Textbox(label="Suggestions")) | |
# Button for summary | |
def show_summary(emotion): | |
return f"Emotion Detected: {emotion}\nUseful Resources based on your mood:\n{show_suggestions(emotion)}" | |
summary_button = gr.Button("Show Summary") | |
summary_output = gr.Textbox(label="Summary") | |
summary_button.click(show_summary, inputs=emotion_output, outputs=summary_output) | |
# Chatbot functionality | |
chatbot = gr.Chatbot(label="Chat") | |
message_input = gr.Textbox(lines=1, label="Message") | |
history_state = gr.State([]) | |
def chat(message, history): | |
history = history or [] | |
message = message.lower() | |
try: | |
results = model.predict([bag_of_words(message, words)]) | |
results_index = np.argmax(results) | |
tag = labels[results_index] | |
for tg in data["intents"]: | |
if tg['tag'] == tag: | |
responses = tg['responses'] | |
response = random.choice(responses) | |
break | |
else: | |
response = "I'm sorry, I didn't understand that. Could you please rephrase?" | |
except Exception as e: | |
response = f"An error occurred: {str(e)}" | |
history.append((message, response)) | |
return history, history | |
message_input.submit(chat, inputs=[message_input, history_state], outputs=[chatbot, history_state]) | |
# User input for text (sentiment analysis) | |
user_input_sentiment = gr.Textbox(lines=1, label="Enter text to analyze sentiment:") | |
# Prediction button for sentiment analysis | |
def predict_sentiment(text): | |
inputs = tokenizer_sentiment(text, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model_sentiment(**inputs) | |
predicted_class = torch.argmax(outputs.logits, dim=1).item() | |
sentiment = ["Negative", "Neutral", "Positive"][predicted_class] | |
return sentiment | |
sentiment_output = gr.Textbox(label="Predicted Sentiment") | |
user_input_sentiment.change(predict_sentiment, inputs=user_input_sentiment, outputs=sentiment_output) | |
# Button to fetch wellness professionals data | |
fetch_button = gr.Button("Fetch Wellness Professionals Data") | |
data_output = gr.Dataframe(headers=["Name", "Address", "Phone", "Rating", "Business Status", "User Ratings Total", "Website", "Types", "Latitude", "Longitude", "Opening Hours", "Reviews", "Email"]) | |
def fetch_data(): | |
all_results = get_all_places(query, location, radius, api_key) | |
if all_results: | |
return pd.DataFrame(all_results, columns=["Name", "Address", "Phone", "Rating", "Business Status", "User Ratings Total", "Website", "Types", "Latitude", "Longitude", "Opening Hours", "Reviews", "Email"]) | |
else: | |
return "No data found." | |
fetch_button.click(fetch_data, inputs=None, outputs=data_output) | |
# Launch Gradio interface | |
demo.launch() |