Spaces:
Sleeping
Sleeping
import json | |
import pickle | |
import random | |
import nltk | |
import numpy as np | |
import tflearn | |
import gradio as gr | |
import requests | |
import torch | |
import pandas as pd | |
import folium | |
from bs4 import BeautifulSoup | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
from nltk.tokenize import word_tokenize | |
from nltk.stem.lancaster import LancasterStemmer | |
import os | |
# Ensure necessary NLTK resources are downloaded | |
nltk.download('punkt') | |
# Initialize the stemmer | |
stemmer = LancasterStemmer() | |
# Load intents.json | |
try: | |
with open("intents.json") as file: | |
data = json.load(file) | |
except FileNotFoundError: | |
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.") | |
# Load preprocessed data from pickle | |
try: | |
with open("data.pickle", "rb") as f: | |
words, labels, training, output = pickle.load(f) | |
except FileNotFoundError: | |
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.") | |
# Build the model structure | |
net = tflearn.input_data(shape=[None, len(training[0])]) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, len(output[0]), activation="softmax") | |
net = tflearn.regression(net) | |
# Load the trained model | |
model = tflearn.DNN(net) | |
try: | |
model.load("MentalHealthChatBotmodel.tflearn") | |
except FileNotFoundError: | |
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.") | |
# Function to process user input into a bag-of-words format | |
def bag_of_words(s, words): | |
bag = [0 for _ in range(len(words))] | |
s_words = word_tokenize(s) | |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words] | |
for se in s_words: | |
for i, w in enumerate(words): | |
if w == se: | |
bag[i] = 1 | |
return np.array(bag) | |
# Chat function | |
def chat(message, history): | |
history = history or [] | |
message = message.lower() | |
try: | |
# Predict the tag | |
results = model.predict([bag_of_words(message, words)]) | |
results_index = np.argmax(results) | |
tag = labels[results_index] | |
# Match tag with intent and choose a random response | |
for tg in data["intents"]: | |
if tg['tag'] == tag: | |
responses = tg['responses'] | |
response = random.choice(responses) | |
break | |
else: | |
response = "I'm sorry, I didn't understand that. Could you please rephrase?" | |
except Exception as e: | |
response = f"An error occurred: {str(e)}" | |
history.append((message, response)) | |
return history, history | |
# Sentiment analysis setup | |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
# Emotion detection setup | |
def load_emotion_model(): | |
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
return tokenizer, model | |
tokenizer_emotion, model_emotion = load_emotion_model() | |
# Emotion detection function with suggestions | |
def detect_emotion(user_input): | |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion) | |
result = pipe(user_input) | |
emotion = result[0]['label'] | |
suggestions = [] | |
video_link = "" | |
# Provide suggestions based on the detected emotion | |
if emotion == 'joy': | |
suggestions = [ | |
("Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"), | |
("Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"), | |
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit") | |
] | |
video_link = "Watch on YouTube: https://youtu.be/m1vaUGtyo-A" | |
elif emotion == 'anger': | |
suggestions = [ | |
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"), | |
("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"), | |
("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety") | |
] | |
video_link = "Watch on YouTube: https://youtu.be/MIc299Flibs" | |
elif emotion == 'fear': | |
suggestions = [ | |
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"), | |
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"), | |
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit") | |
] | |
video_link = "Watch on YouTube: https://youtu.be/yGKKz185M5o" | |
elif emotion == 'sadness': | |
suggestions = [ | |
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"), | |
("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety") | |
] | |
video_link = "Watch on YouTube: https://youtu.be/-e-4Kx5px_I" | |
elif emotion == 'surprise': | |
suggestions = [ | |
("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"), | |
("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety") | |
] | |
video_link = "Watch on YouTube: https://youtu.be/m1vaUGtyo-A" | |
return emotion, suggestions, video_link | |
# Google Geocoding API setup to convert city name to latitude/longitude | |
geocode_url = "https://maps.googleapis.com/maps/api/geocode/json" | |
def get_lat_lon(location, api_key): | |
params = { | |
"address": location, | |
"key": api_key | |
} | |
response = requests.get(geocode_url, params=params) | |
if response.status_code == 200: | |
result = response.json() | |
if result['status'] == 'OK': | |
# Return the first result's latitude and longitude | |
location = result['results'][0]['geometry']['location'] | |
return location['lat'], location['lng'] | |
return None, None | |
# Get wellness professionals | |
def get_wellness_professionals(location, api_key): | |
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath" | |
radius = 50000 # 50 km radius | |
# Get the latitude and longitude from the location input | |
lat, lon = get_lat_lon(location, api_key) | |
if lat is None or lon is None: | |
return "Unable to find coordinates for the given location." | |
# Using Google Places API to fetch wellness professionals | |
data = get_places_data(query, f"{lat},{lon}", radius, api_key) | |
if data: | |
results = data.get('results', []) | |
wellness_data = [] | |
for place in results: | |
name = place.get("name") | |
address = place.get("formatted_address") | |
latitude = place.get("geometry", {}).get("location", {}).get("lat") | |
longitude = place.get("geometry", {}).get("location", {}).get("lng") | |
wellness_data.append([name, address, latitude, longitude]) | |
return wellness_data | |
return [] | |
# Function to generate a map with wellness professionals | |
def generate_map(wellness_data): | |
map_center = [23.685, 90.3563] # Default center for Bangladesh (you can adjust this) | |
m = folium.Map(location=map_center, zoom_start=12) | |
for place in wellness_data: | |
name, address, lat, lon = place | |
folium.Marker( | |
location=[lat, lon], | |
popup=f"<b>{name}</b><br>{address}", | |
icon=folium.Icon(color='blue', icon='info-sign') | |
).add_to(m) | |
# Save map as an HTML file | |
map_file = "wellness_map.html" | |
m.save(map_file) | |
# Return the HTML file path to be embedded in Gradio | |
return map_file | |
# Gradio interface setup for user interaction | |
def user_interface(message, location, history, api_key): | |
history, history = chat(message, history) | |
# Sentiment analysis | |
inputs = tokenizer_sentiment(message, return_tensors="pt") | |
outputs = model_sentiment(**inputs) | |
sentiment = ["Negative", "Neutral", "Positive"][torch.argmax(outputs.logits, dim=1).item()] | |
# Emotion detection | |
emotion, resources, video_link = detect_emotion(message) | |
# Get wellness professionals | |
wellness_data = get_wellness_professionals(location, api_key) | |
# Generate the map | |
map_file = generate_map(wellness_data) | |
# Create a DataFrame for the suggestions | |
suggestions_df = pd.DataFrame(resources, columns=["Subject", "Article URL"]) | |
suggestions_df["Video URL"] = video_link # Add video URL column | |
return history, history, sentiment, emotion, resources, video_link, map_file, suggestions_df.to_html(escape=False) | |
# Gradio chatbot interface | |
chatbot = gr.Chatbot(label="Mental Health Chatbot") | |
location_input = gr.Textbox(label="Enter your location (latitude,longitude)", placeholder="e.g., 21.3,-157.8") | |
# Gradio interface definition | |
demo = gr.Interface( | |
user_interface, | |
[gr.Textbox(label="Message"), location_input, "state", "text"], | |
[chatbot, "state", "text", "text", "json", "text", "html", "html"], # Added additional output for the map | |
allow_flagging="never", | |
title="Mental Health & Well-being Assistant" | |
) | |
# Launch Gradio interface | |
if __name__ == "__main__": | |
demo.launch() | |