Testing / app.py
DreamStream-1's picture
Update app.py
ebca5ff verified
raw
history blame
9.83 kB
import json
import pickle
import random
import nltk
import numpy as np
import tflearn
import gradio as gr
import requests
import torch
import pandas as pd
import folium
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
import os
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Sentiment analysis setup
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Emotion detection setup
def load_emotion_model():
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
return tokenizer, model
tokenizer_emotion, model_emotion = load_emotion_model()
# Emotion detection function with suggestions
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
suggestions = []
video_link = ""
# Provide suggestions based on the detected emotion
if emotion == 'joy':
suggestions = [
("Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit")
]
video_link = "Watch on YouTube: https://youtu.be/m1vaUGtyo-A"
elif emotion == 'anger':
suggestions = [
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"),
("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety")
]
video_link = "Watch on YouTube: https://youtu.be/MIc299Flibs"
elif emotion == 'fear':
suggestions = [
("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit")
]
video_link = "Watch on YouTube: https://youtu.be/yGKKz185M5o"
elif emotion == 'sadness':
suggestions = [
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety")
]
video_link = "Watch on YouTube: https://youtu.be/-e-4Kx5px_I"
elif emotion == 'surprise':
suggestions = [
("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"),
("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety")
]
video_link = "Watch on YouTube: https://youtu.be/m1vaUGtyo-A"
return emotion, suggestions, video_link
# Google Geocoding API setup to convert city name to latitude/longitude
geocode_url = "https://maps.googleapis.com/maps/api/geocode/json"
def get_lat_lon(location, api_key):
params = {
"address": location,
"key": api_key
}
response = requests.get(geocode_url, params=params)
if response.status_code == 200:
result = response.json()
if result['status'] == 'OK':
# Return the first result's latitude and longitude
location = result['results'][0]['geometry']['location']
return location['lat'], location['lng']
return None, None
# Get wellness professionals
def get_wellness_professionals(location, api_key):
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"
radius = 50000 # 50 km radius
# Get the latitude and longitude from the location input
lat, lon = get_lat_lon(location, api_key)
if lat is None or lon is None:
return "Unable to find coordinates for the given location."
# Using Google Places API to fetch wellness professionals
data = get_places_data(query, f"{lat},{lon}", radius, api_key)
if data:
results = data.get('results', [])
wellness_data = []
for place in results:
name = place.get("name")
address = place.get("formatted_address")
latitude = place.get("geometry", {}).get("location", {}).get("lat")
longitude = place.get("geometry", {}).get("location", {}).get("lng")
wellness_data.append([name, address, latitude, longitude])
return wellness_data
return []
# Function to generate a map with wellness professionals
def generate_map(wellness_data):
map_center = [23.685, 90.3563] # Default center for Bangladesh (you can adjust this)
m = folium.Map(location=map_center, zoom_start=12)
for place in wellness_data:
name, address, lat, lon = place
folium.Marker(
location=[lat, lon],
popup=f"<b>{name}</b><br>{address}",
icon=folium.Icon(color='blue', icon='info-sign')
).add_to(m)
# Save map as an HTML file
map_file = "wellness_map.html"
m.save(map_file)
# Return the HTML file path to be embedded in Gradio
return map_file
# Gradio interface setup for user interaction
def user_interface(message, location, history, api_key):
history, history = chat(message, history)
# Sentiment analysis
inputs = tokenizer_sentiment(message, return_tensors="pt")
outputs = model_sentiment(**inputs)
sentiment = ["Negative", "Neutral", "Positive"][torch.argmax(outputs.logits, dim=1).item()]
# Emotion detection
emotion, resources, video_link = detect_emotion(message)
# Get wellness professionals
wellness_data = get_wellness_professionals(location, api_key)
# Generate the map
map_file = generate_map(wellness_data)
# Create a DataFrame for the suggestions
suggestions_df = pd.DataFrame(resources, columns=["Subject", "Article URL"])
suggestions_df["Video URL"] = video_link # Add video URL column
return history, history, sentiment, emotion, resources, video_link, map_file, suggestions_df.to_html(escape=False)
# Gradio chatbot interface
chatbot = gr.Chatbot(label="Mental Health Chatbot")
location_input = gr.Textbox(label="Enter your location (latitude,longitude)", placeholder="e.g., 21.3,-157.8")
# Gradio interface definition
demo = gr.Interface(
user_interface,
[gr.Textbox(label="Message"), location_input, "state", "text"],
[chatbot, "state", "text", "text", "json", "text", "html", "html"], # Added additional output for the map
allow_flagging="never",
title="Mental Health & Well-being Assistant"
)
# Launch Gradio interface
if __name__ == "__main__":
demo.launch()