Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
import nltk | |
import numpy as np | |
import tflearn | |
import random | |
import json | |
import pickle | |
from nltk.tokenize import word_tokenize | |
from nltk.stem.lancaster import LancasterStemmer | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline | |
import googlemaps | |
import folium | |
import os | |
import base64 | |
import torch # Added missing import for torch | |
# Disable GPU usage for TensorFlow | |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | |
# Ensure necessary NLTK resources are downloaded | |
nltk.download('punkt') | |
# Initialize the stemmer | |
stemmer = LancasterStemmer() | |
# Load intents.json for Well-Being Chatbot | |
with open("intents.json") as file: | |
data = json.load(file) | |
# Load preprocessed data for Well-Being Chatbot | |
with open("data.pickle", "rb") as f: | |
words, labels, training, output = pickle.load(f) | |
# Build the model structure for Well-Being Chatbot | |
net = tflearn.input_data(shape=[None, len(training[0])]) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, 8) | |
net = tflearn.fully_connected(net, len(output[0]), activation="softmax") | |
net = tflearn.regression(net) | |
# Load the trained model | |
model = tflearn.DNN(net) | |
model.load("MentalHealthChatBotmodel.tflearn") | |
# Function to process user input into a bag-of-words format for Chatbot | |
def bag_of_words(s, words): | |
bag = [0 for _ in range(len(words))] | |
s_words = word_tokenize(s) | |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words] | |
for se in s_words: | |
for i, w in enumerate(words): | |
if w == se: | |
bag[i] = 1 | |
return np.array(bag) | |
# Chat function for Well-Being Chatbot | |
def chatbot(message, history): | |
history = history or [] | |
message = message.lower() | |
try: | |
# Predict the tag | |
results = model.predict([bag_of_words(message, words)]) | |
results_index = np.argmax(results) | |
tag = labels[results_index] | |
# Match tag with intent and choose a random response | |
for tg in data["intents"]: | |
if tg['tag'] == tag: | |
responses = tg['responses'] | |
response = random.choice(responses) | |
break | |
else: | |
response = "I'm sorry, I didn't understand that. Could you please rephrase?" | |
except Exception as e: | |
print(f"Error in chatbot: {e}") # For debugging | |
response = f"An error occurred: {str(e)}" | |
# Convert the new message and response to the 'messages' format | |
history.append({"role": "user", "content": message}) | |
history.append({"role": "assistant", "content": response}) | |
return history, history | |
# Sentiment Analysis using Hugging Face model | |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") | |
def analyze_sentiment(user_input): | |
inputs = tokenizer_sentiment(user_input, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model_sentiment(**inputs) | |
predicted_class = torch.argmax(outputs.logits, dim=1).item() | |
sentiment = ["Negative", "Neutral", "Positive"][predicted_class] | |
return f"Predicted Sentiment: {sentiment}" | |
# Emotion Detection using Hugging Face model | |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") | |
def detect_emotion(user_input): | |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion) | |
result = pipe(user_input) | |
emotion = result[0]['label'] | |
return f"Emotion Detected: {emotion}" | |
# Initialize Google Maps API client securely | |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY')) | |
# Function to search for health professionals | |
def search_health_professionals(query, location, radius=10000): | |
places_result = gmaps.places_nearby(location, radius=radius, type='doctor', keyword=query) | |
return places_result.get('results', []) | |
# Function to get directions and display on Gradio UI | |
def get_health_professionals_and_map(current_location, health_professional_query): | |
location = gmaps.geocode(current_location) | |
if location: | |
lat = location[0]["geometry"]["location"]["lat"] | |
lng = location[0]["geometry"]["location"]["lng"] | |
location = (lat, lng) | |
professionals = search_health_professionals(health_professional_query, location) | |
# Generate map | |
map_center = location | |
m = folium.Map(location=map_center, zoom_start=13) | |
# Add markers to the map | |
for place in professionals: | |
folium.Marker( | |
location=[place['geometry']['location']['lat'], place['geometry']['location']['lng']], | |
popup=place['name'] | |
).add_to(m) | |
# Convert map to HTML for Gradio display | |
map_html = m._repr_html_() | |
# Route information | |
route_info = "\n".join([f"{place['name']} - {place['vicinity']}" for place in professionals]) | |
return route_info, map_html | |
else: | |
return "Unable to find location.", "" | |
# Function to generate suggestions based on the detected emotion | |
def generate_suggestions(emotion): | |
suggestions = { | |
'joy': [ | |
{"Title": "Relaxation Techniques", "Subject": "Relaxation", "Link": '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Mindful Breathing Meditation</a>'}, | |
{"Title": "Dealing with Stress", "Subject": "Stress Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anxiety</a>'}, | |
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'}, | |
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch Video</a>'} | |
], | |
'anger': [ | |
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'}, | |
{"Title": "Stress Management Tips", "Subject": "Stress Management", "Link": '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Harvard Health: Stress Management</a>'}, | |
{"Title": "Dealing with Anger", "Subject": "Anger Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anger</a>'}, | |
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch Video</a>'} | |
], | |
'fear': [ | |
{"Title": "Mindfulness Practices", "Subject": "Mindfulness", "Link": '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Mindful Breathing Meditation</a>'}, | |
{"Title": "Coping with Anxiety", "Subject": "Anxiety Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anxiety</a>'}, | |
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'}, | |
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch Video</a>'} | |
] | |
} | |
emotion_suggestions = suggestions.get(emotion, []) | |
return pd.DataFrame(emotion_suggestions) | |
# Custom CSS styling for Gradio interface | |
css = """ | |
body { | |
font-family: 'Arial', sans-serif; | |
} | |
.gradio-container { | |
background-color: #f7f7f7; | |
} | |
.gradio-input, .gradio-output { | |
padding: 10px; | |
border-radius: 5px; | |
background-color: #fff; | |
border: 1px solid #ccc; | |
} | |
.gradio-container .gradio-button { | |
background-color: #4CAF50; | |
color: white; | |
border-radius: 5px; | |
} | |
.gradio-container .gradio-button:hover { | |
background-color: #45a049; | |
} | |
.gradio-output { | |
font-size: 16px; | |
color: #333; | |
} | |
.gradio-container h3 { | |
color: #333; | |
} | |
.gradio-output .output { | |
border-top: 2px solid #ddd; | |
} | |
""" | |
# Gradio interface components | |
def gradio_app(message, current_location, health_professional_query, history): | |
# Detect sentiment and emotion | |
sentiment = analyze_sentiment(message) | |
emotion = detect_emotion(message) | |
# Generate suggestions based on emotion | |
suggestions_df = generate_suggestions(emotion) | |
# Get health professionals details and map | |
route_info, map_html = get_health_professionals_and_map(current_location, health_professional_query) | |
return sentiment, emotion, suggestions_df, route_info, map_html, history | |
# Gradio interface setup | |
iface = gr.Interface( | |
fn=gradio_app, | |
inputs=[ | |
gr.Textbox(lines=2, placeholder="Enter your message..."), | |
gr.Textbox(lines=2, placeholder="Enter your current location..."), | |
gr.Textbox(lines=2, placeholder="Enter health professional query..."), | |
gr.State(value=[]) | |
], | |
outputs=[ | |
gr.Textbox(label="Sentiment Analysis"), | |
gr.Textbox(label="Detected Emotion"), | |
gr.Dataframe(label="Suggestions"), | |
gr.Textbox(label="Nearby Health Professionals"), | |
gr.HTML(label="Map of Health Professionals"), | |
gr.State(value=[]) | |
], | |
live=True, | |
allow_flagging="never", | |
theme="huggingface", | |
css=css # Apply custom CSS styling | |
) | |
# Launch Gradio interface | |
iface.launch(share=True) |