Testing / app.py
DreamStream-1's picture
Update app.py
2f693ca verified
raw
history blame
10.1 kB
import gradio as gr
import pandas as pd
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import os
import base64
import torch # Added missing import for torch
# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json for Well-Being Chatbot
with open("intents.json") as file:
data = json.load(file)
# Load preprocessed data for Well-Being Chatbot
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the model structure for Well-Being Chatbot
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
# Function to process user input into a bag-of-words format for Chatbot
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function for Well-Being Chatbot
def chatbot(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
print(f"Error in chatbot: {e}") # For debugging
response = f"An error occurred: {str(e)}"
# Convert the new message and response to the 'messages' format
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, history
# Sentiment Analysis using Hugging Face model
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
return f"Predicted Sentiment: {sentiment}"
# Emotion Detection using Hugging Face model
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
return f"Emotion Detected: {emotion}"
# Initialize Google Maps API client securely
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Function to search for health professionals
def search_health_professionals(query, location, radius=10000):
places_result = gmaps.places_nearby(location, radius=radius, type='doctor', keyword=query)
return places_result.get('results', [])
# Function to get directions and display on Gradio UI
def get_health_professionals_and_map(current_location, health_professional_query):
location = gmaps.geocode(current_location)
if location:
lat = location[0]["geometry"]["location"]["lat"]
lng = location[0]["geometry"]["location"]["lng"]
location = (lat, lng)
professionals = search_health_professionals(health_professional_query, location)
# Generate map
map_center = location
m = folium.Map(location=map_center, zoom_start=13)
# Add markers to the map
for place in professionals:
folium.Marker(
location=[place['geometry']['location']['lat'], place['geometry']['location']['lng']],
popup=place['name']
).add_to(m)
# Convert map to HTML for Gradio display
map_html = m._repr_html_()
# Route information
route_info = "\n".join([f"{place['name']} - {place['vicinity']}" for place in professionals])
return route_info, map_html
else:
return "Unable to find location.", ""
# Function to generate suggestions based on the detected emotion
def generate_suggestions(emotion):
suggestions = {
'joy': [
{"Title": "Relaxation Techniques", "Subject": "Relaxation", "Link": '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Mindful Breathing Meditation</a>'},
{"Title": "Dealing with Stress", "Subject": "Stress Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anxiety</a>'},
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch Video</a>'}
],
'anger': [
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
{"Title": "Stress Management Tips", "Subject": "Stress Management", "Link": '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Harvard Health: Stress Management</a>'},
{"Title": "Dealing with Anger", "Subject": "Anger Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anger</a>'},
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch Video</a>'}
],
'fear': [
{"Title": "Mindfulness Practices", "Subject": "Mindfulness", "Link": '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Mindful Breathing Meditation</a>'},
{"Title": "Coping with Anxiety", "Subject": "Anxiety Management", "Link": '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Tips for Dealing with Anxiety</a>'},
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Emotional Wellness Toolkit</a>'},
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch Video</a>'}
]
}
emotion_suggestions = suggestions.get(emotion, [])
return pd.DataFrame(emotion_suggestions)
# Custom CSS styling for Gradio interface
css = """
body {
font-family: 'Arial', sans-serif;
}
.gradio-container {
background-color: #f7f7f7;
}
.gradio-input, .gradio-output {
padding: 10px;
border-radius: 5px;
background-color: #fff;
border: 1px solid #ccc;
}
.gradio-container .gradio-button {
background-color: #4CAF50;
color: white;
border-radius: 5px;
}
.gradio-container .gradio-button:hover {
background-color: #45a049;
}
.gradio-output {
font-size: 16px;
color: #333;
}
.gradio-container h3 {
color: #333;
}
.gradio-output .output {
border-top: 2px solid #ddd;
}
"""
# Gradio interface components
def gradio_app(message, current_location, health_professional_query, history):
# Detect sentiment and emotion
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message)
# Generate suggestions based on emotion
suggestions_df = generate_suggestions(emotion)
# Get health professionals details and map
route_info, map_html = get_health_professionals_and_map(current_location, health_professional_query)
return sentiment, emotion, suggestions_df, route_info, map_html, history
# Gradio interface setup
iface = gr.Interface(
fn=gradio_app,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your message..."),
gr.Textbox(lines=2, placeholder="Enter your current location..."),
gr.Textbox(lines=2, placeholder="Enter health professional query..."),
gr.State(value=[])
],
outputs=[
gr.Textbox(label="Sentiment Analysis"),
gr.Textbox(label="Detected Emotion"),
gr.Dataframe(label="Suggestions"),
gr.Textbox(label="Nearby Health Professionals"),
gr.HTML(label="Map of Health Professionals"),
gr.State(value=[])
],
live=True,
allow_flagging="never",
theme="huggingface",
css=css # Apply custom CSS styling
)
# Launch Gradio interface
iface.launch(share=True)