Testing / app.py
DreamStream-1's picture
Update app.py
6239dea verified
raw
history blame
10.3 kB
import json
import pickle
import random
import nltk
import numpy as np
import tflearn
import gradio as gr
import requests
import torch
import pandas as pd
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
import os
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
except Exception as e:
response = f"An error occurred: {str(e)}"
history.append((message, response))
return history, history
# Sentiment analysis setup
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Emotion detection setup
def load_emotion_model():
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
return tokenizer, model
tokenizer_emotion, model_emotion = load_emotion_model()
# Google Places API setup for wellness professionals
url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"
api_key = os.getenv("GOOGLE_API_KEY") # Use environment variable for security
# Function to get places data using Google Places API
def get_places_data(query, location, radius, api_key, next_page_token=None):
params = {
"query": query,
"location": location,
"radius": radius,
"key": api_key
}
if next_page_token:
params["pagetoken"] = next_page_token
response = requests.get(url, params=params)
if response.status_code == 200:
return response.json()
else:
return None
# Web scraping function to get wellness professional data (alternative to API)
def scrape_wellness_professionals(query, location):
# User-Agent header to simulate a browser request
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
}
search_url = f"https://www.google.com/search?q={query}+near+{location}"
# Make a request to the search URL with headers
response = requests.get(search_url, headers=headers)
if response.status_code == 200:
soup = BeautifulSoup(response.text, 'html.parser')
# Parse and extract wellness professionals from the HTML
wellness_data = []
results = soup.find_all("div", class_="BVG0Nb") # Adjust class based on the actual HTML structure
for result in results:
name = result.get_text()
link = result.find("a")["href"] if result.find("a") else None
wellness_data.append([name, link])
return wellness_data
else:
return []
# Main function to fetch wellness professional data and display on map
def get_wellness_professionals(location):
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"
radius = 50000 # 50 km radius
# Using Google Places API if available
data = get_places_data(query, location, radius, api_key)
if data:
results = data.get('results', [])
wellness_data = []
for place in results:
name = place.get("name")
address = place.get("formatted_address")
latitude = place.get("geometry", {}).get("location", {}).get("lat")
longitude = place.get("geometry", {}).get("location", {}).get("lng")
wellness_data.append([name, address, latitude, longitude])
return wellness_data
# Fallback to scraping if API is not available or fails
return scrape_wellness_professionals(query, location)
# Emotion detection function with suggestions
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]['label']
# Provide suggestions based on the detected emotion
if emotion == 'joy':
return ("You're feeling happy! Keep up the great mood!",
[("Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit")],
"Watch on YouTube: https://youtu.be/m1vaUGtyo-A")
elif emotion == 'anger':
return ("You're feeling angry. It's okay to feel this way. Let's try to calm down.",
[("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"),
("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety")],
"Watch on YouTube: https://youtu.be/MIc299Flibs")
elif emotion == 'fear':
return ("You're feeling fearful. Take a moment to breathe and relax.",
[("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit")],
"Watch on YouTube: https://youtu.be/yGKKz185M5o")
elif emotion == 'sadness':
return ("You're feeling sad. It's okay to take a break.",
[("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety")],
"Watch on YouTube: https://youtu.be/-e-4Kx5px_I")
elif emotion == 'surprise':
return ("You're feeling surprised. It's okay to feel neutral!",
[("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"),
("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety")],
"Watch on YouTube: https://youtu.be/m1vaUGtyo-A")
return ("Could not detect emotion.", [], "")
# Gradio interface setup for user interaction
def user_interface(message, location, history):
history, history = chat(message, history)
# Sentiment analysis
inputs = tokenizer_sentiment(message, return_tensors="pt")
outputs = model_sentiment(**inputs)
sentiment = ["Negative", "Neutral", "Positive"][torch.argmax(outputs.logits, dim=1).item()]
# Emotion detection
emotion_msg, resources, video_link = detect_emotion(message)
# Get wellness professionals
wellness_data = get_wellness_professionals(location)
# Display wellness professionals in a table format
wellness_df = pd.DataFrame(wellness_data, columns=["Name", "Address", "Latitude", "Longitude"])
return history, history, sentiment, emotion_msg, resources, video_link, wellness_df.to_html(escape=False)
# Gradio chatbot interface
chatbot = gr.Chatbot(label="Mental Health Chatbot")
location_input = gr.Textbox(label="Enter your location (latitude,longitude)", placeholder="e.g., 21.3,-157.8")
# Gradio interface definition
demo = gr.Interface(
user_interface,
[gr.Textbox(label="Message"), location_input, "state"],
[chatbot, "state", "text", "text", "json", "text", "html"],
allow_flagging="never",
title="Mental Health & Well-being Assistant"
)
# Launch Gradio interface
if __name__ == "__main__":
demo.launch()