Testing / app.py
DreamStream-1's picture
Update app.py
658d2e0 verified
raw
history blame
8.61 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
# Disable GPU usage for TensorFlow
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Suppress TensorFlow warnings
# Ensure necessary NLTK resources are downloaded
nltk.download("punkt")
# Initialize stemmer
stemmer = LancasterStemmer()
# Load chatbot intents and training data
with open("intents.json") as file:
intents_data = json.load(file)
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the chatbot's neural network model
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
chatbot_model = tflearn.DNN(net)
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
# Hugging Face models for sentiment and emotion detection
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Google Maps API client
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
# Chatbot logic
def bag_of_words(s, words):
bag = [0] * len(words)
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
def chatbot(message, history):
history = history or []
try:
results = chatbot_model.predict([bag_of_words(message, words)])
tag = labels[np.argmax(results)]
response = "I'm not sure how to respond to that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error: {str(e)} πŸ’₯"
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": response})
return history, response
# Sentiment analysis
def analyze_sentiment(user_input):
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
with torch.no_grad():
outputs = model_sentiment(**inputs)
sentiment_class = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return sentiment_map[sentiment_class]
# Emotion detection
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
result = pipe(user_input)
emotion = result[0]["label"]
return emotion
# Generate suggestions based on detected emotion
def generate_suggestions(emotion):
suggestions = {
"joy": [
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Read</a>'],
["Dealing with Stress", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Read</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Read</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
"anger": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Read</a>'],
["Stress Management Tips", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Read</a>'],
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Read</a>'],
["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
],
"fear": [
["Mindfulness Practices", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Read</a>'],
["Coping with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Read</a>'],
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Read</a>'],
["Relaxation Video", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>'],
],
"sadness": [
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Read</a>'],
["Dealing with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Read</a>'],
["Relaxation Video", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>'],
],
"surprise": [
["Managing Stress", '<a href="https://www.health.harvard.edu/health-a-to-z" target="_blank">Read</a>'],
["Coping Strategies", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Read</a>'],
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
],
}
return suggestions.get(emotion)
# Search nearby professionals and generate map
def get_health_professionals_and_map(location, query):
try:
geo_location = gmaps.geocode(location)
if geo_location:
lat, lng = geo_location[0]["geometry"]["location"].values()
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
map_ = folium.Map(location=(lat, lng), zoom_start=13)
professionals = []
for place in places_result:
professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
folium.Marker([place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
popup=place["name"]).add_to(map_)
return professionals, map_._repr_html_()
return [], ""
except Exception as e:
return [f"Error: {e}"], ""
# Application logic integrated in one function
def app_function(message, location, query, history):
chatbot_history, _ = chatbot(message, history)
sentiment = analyze_sentiment(message)
emotion = detect_emotion(message.lower())
suggestions = generate_suggestions(emotion)
professionals_info, map_html = get_health_professionals_and_map(location, query)
return chatbot_history, sentiment, emotion, suggestions, professionals_info, map_html
# Gradio app interface
with gr.Blocks() as app:
gr.Markdown("# 🌟 Well-Being Companion")
gr.Markdown("Empowering Your Mental Health Journey πŸ’š")
with gr.Row():
user_message = gr.Textbox(label="Your Message", placeholder="Enter your message...")
user_location = gr.Textbox(label="Your Location", placeholder="Enter location...")
search_query = gr.Textbox(label="Query (e.g., therapist)", placeholder="Search for professionals...")
submit_btn = gr.Button(value="Submit")
chatbot_box = gr.Chatbot(label="Chat History", type="messages")
emotion_display = gr.Textbox(label="Detected Emotion")
sentiment_display = gr.Textbox(label="Detected Sentiment")
suggestions_table = gr.DataFrame(headers=["Title", "Links"], label="Suggestions", height=250)
map_output = gr.HTML(label="Nearby Professionals Map")
professional_display = gr.Textbox(label="Nearby Professionals", lines=5)
submit_btn.click(
app_function,
inputs=[user_message, user_location, search_query, chatbot_box],
outputs=[
chatbot_box, sentiment_display, emotion_display, suggestions_table, professional_display, map_output,
],
)
app.launch()