Testing / app.py
DreamStream-1's picture
Update app.py
a6192b5 verified
raw
history blame
6.99 kB
import os
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import pandas as pd
import torch
# Disable GPU usage for TensorFlow compatibility
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
# Download necessary NLTK resources
nltk.download("punkt")
# Initialize Lancaster Stemmer
stemmer = LancasterStemmer()
# Load intents.json for the chatbot
with open("intents.json") as file:
intents_data = json.load(file)
# Load tokenized training data
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
# Build the TFlearn model
def build_chatbot_model():
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
model = tflearn.DNN(net)
model.load("MentalHealthChatBotmodel.tflearn")
return model
chatbot_model = build_chatbot_model()
# Function: Bag of words
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chatbot response generator
def chatbot_response(message, history):
"""Generates a response from the chatbot and appends it to the history."""
history = history or []
try:
result = chatbot_model.predict([bag_of_words(message, words)])
idx = np.argmax(result)
tag = labels[idx]
response = "I'm not sure how to respond to that. πŸ€”"
for intent in intents_data["intents"]:
if intent["tag"] == tag:
response = random.choice(intent["responses"])
break
except Exception as e:
response = f"Error generating response: {str(e)} πŸ’₯"
# Format output as tuples for Gradio Chatbot compatibility
history.append((message, response))
return history, response
# Hugging Face transformers model for emotion detection
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Detect emotion
def detect_emotion(user_input):
pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
try:
result = pipe(user_input)
emotion = result[0]["label"]
emotion_map = {
"joy": "😊 Joy",
"anger": "😠 Anger",
"sadness": "😒 Sadness",
"fear": "😨 Fear",
"surprise": "😲 Surprise",
"neutral": "😐 Neutral",
}
return emotion_map.get(emotion, "Unknown Emotion πŸ€”")
except Exception as e:
return f"Error detecting emotion: {str(e)} πŸ’₯"
# Sentiment analysis using Hugging Face
sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
def analyze_sentiment(user_input):
"""Analyze sentiment of user input."""
inputs = sentiment_tokenizer(user_input, return_tensors="pt")
try:
with torch.no_grad():
outputs = sentiment_model(**inputs)
sentiment = torch.argmax(outputs.logits, dim=1).item()
sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
return sentiment_map[sentiment]
except Exception as e:
return f"Error in sentiment analysis: {str(e)} πŸ’₯"
# Suggestions based on emotion
def generate_suggestions(emotion):
suggestions = {
"😊 Joy": [
{"Title": "Mindful Meditation πŸ§˜β€β™‚οΈ", "Link": "https://www.helpguide.org/meditation"},
{"Title": "Explore a new skill πŸš€", "Link": "https://www.skillshare.com/"},
],
"😒 Sadness": [
{"Title": "Improve mental resilience ✨", "Link": "https://www.psychologytoday.com/"},
{"Title": "Reach out to a therapist πŸ’¬", "Link": "https://www.betterhelp.com/"},
],
"😠 Anger": [
{"Title": "Anger Management Guide πŸ”₯", "Link": "https://www.mentalhealth.org.uk/"},
{"Title": "Calming Exercises 🌿", "Link": "https://www.calm.com/"},
],
}
return suggestions.get(emotion, [{"Title": "General Wellness Resources 🌈", "Link": "https://www.wellness.com/"}])
# Main App Function
def well_being_app(user_input, history):
"""Main function for chatbot, emotion detection, sentiment analysis, and suggestions."""
# Chatbot response
history, chatbot_reply = chatbot_response(user_input, history)
# Emotion detection
emotion = detect_emotion(user_input)
# Sentiment analysis
sentiment = analyze_sentiment(user_input)
# Generating suggestions
detected_emotion = emotion.split(": ")[-1]
suggestions = generate_suggestions(detected_emotion)
suggestions_df = pd.DataFrame(suggestions)
return history, sentiment, emotion, suggestions_df
# Custom CSS for Beautification
custom_css = """
body {
background: linear-gradient(135deg, #28a745, #218838);
font-family: 'Arial', sans-serif;
color: black;
}
#component-0 span {
color: white;
}
button {
background-color: #20c997;
color: white;
padding: 12px 20px;
font-size: 16px;
border-radius: 12px;
cursor: pointer;
}
button:hover {
background-color: #17a2b8;
}
input[type="text"],
textarea {
background: #ffffff;
color: #000000;
border: solid 1px #ced4da;
padding: 10px;
font-size: 14px;
border-radius: 6px;
}
"""
# Gradio UI
with gr.Blocks(css=custom_css) as interface:
gr.Markdown("# 🌱 **Well-being Companion**")
gr.Markdown("### Empowering your well-being journey with AI πŸ’š")
with gr.Row():
user_input = gr.Textbox(lines=2, placeholder="How can I support you today?", label="Your Input")
with gr.Row():
submit_button = gr.Button("Submit", elem_id="submit")
with gr.Row():
chatbot_out = gr.Chatbot(label="Chat History")
sentiment_out = gr.Textbox(label="Sentiment Analysis")
emotion_out = gr.Textbox(label="Detected Emotion")
with gr.Row():
suggestions_out = gr.DataFrame(label="Suggestions", headers=["Title", "Link"])
submit_button.click(
well_being_app,
inputs=[user_input, chatbot_out],
outputs=[chatbot_out, sentiment_out, emotion_out, suggestions_out],
)
# Launch App
interface.launch()