Testing / app.py
DreamStream-1's picture
Update app.py
613b05f verified
raw
history blame
10.1 kB
import gradio as gr
import nltk
import numpy as np
import tflearn
import random
import json
import pickle
import torch
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import requests
from bs4 import BeautifulSoup
import pandas as pd
import geocoder # Use geocoder to get latitude/longitude from city
# Ensure necessary NLTK resources are downloaded
nltk.download('punkt')
# Initialize the stemmer
stemmer = LancasterStemmer()
# Load intents.json
try:
with open("intents.json") as file:
data = json.load(file)
except FileNotFoundError:
raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
# Load preprocessed data from pickle
try:
with open("data.pickle", "rb") as f:
words, labels, training, output = pickle.load(f)
except FileNotFoundError:
raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
# Build the model structure
net = tflearn.input_data(shape=[None, len(training[0])])
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, 8)
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
net = tflearn.regression(net)
# Load the trained model
model = tflearn.DNN(net)
try:
model.load("MentalHealthChatBotmodel.tflearn")
except FileNotFoundError:
raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
# Function to process user input into a bag-of-words format
def bag_of_words(s, words):
bag = [0 for _ in range(len(words))]
s_words = word_tokenize(s)
s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
for se in s_words:
for i, w in enumerate(words):
if w == se:
bag[i] = 1
return np.array(bag)
# Chat function
def chat(message, history, state):
history = history or []
message = message.lower()
try:
# Predict the tag
results = model.predict([bag_of_words(message, words)])
results_index = np.argmax(results)
tag = labels[results_index]
# Match tag with intent and choose a random response
for tg in data["intents"]:
if tg['tag'] == tag:
responses = tg['responses']
response = random.choice(responses)
break
else:
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
# Add emoticons to the response
emoticon_dict = {
"joy": "😊",
"anger": "😑",
"fear": "😨",
"sadness": "πŸ˜”",
"surprise": "😲",
"neutral": "😐"
}
# Add the emotion-related emoticon to the response
for tg in data["intents"]:
if tg['tag'] == tag:
emotion = tg.get('emotion', 'neutral') # Default to neutral if no emotion is defined
response = f"{response} {emoticon_dict.get(emotion, '😐')}"
break
history.append((message, response))
# Transition to the next feature (sentiment analysis)
state['step'] = 2 # Move to sentiment analysis
except Exception as e:
response = f"An error occurred: {str(e)}"
return history, history, state
# Load pre-trained model and tokenizer for sentiment analysis
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
# Function for sentiment analysis
def analyze_sentiment(text, state):
inputs = tokenizer(text, return_tensors="pt")
with torch.no_grad():
outputs = sentiment_model(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
# Add emoticon to sentiment
sentiment_emojis = {
"Negative": "😞",
"Neutral": "😐",
"Positive": "😊"
}
sentiment_with_emoji = f"{sentiment} {sentiment_emojis.get(sentiment, '😐')}"
# Transition to emotion detection
state['step'] = 3 # Move to emotion detection and suggestions
return sentiment_with_emoji, state
# Load pre-trained model and tokenizer for emotion detection
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
# Function for emotion detection and suggestions
def detect_emotion(text, state):
pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
result = pipe(text)
emotion = result[0]['label']
# Provide suggestions based on detected emotion
suggestions = provide_suggestions(emotion)
# Transition to wellness professional search
state['step'] = 4 # Move to wellness professional search
return emotion, suggestions, state
# Suggestions based on detected emotion
def provide_suggestions(emotion):
resources = {
'joy': {
'message': "You're feeling happy! Keep up the great mood! 😊",
'articles': [
"[Relaxation Techniques](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)",
"[Dealing with Stress](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
],
'videos': "[Watch Relaxation Video](https://youtu.be/m1vaUGtyo-A)"
},
'anger': {
'message': "You're feeling angry. It's okay to feel this way. Let's try to calm down. 😑",
'articles': [
"[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)",
"[Stress Management Tips](https://www.health.harvard.edu/health-a-to-z)"
],
'videos': "[Watch Anger Management Video](https://youtu.be/MIc299Flibs)"
},
'fear': {
'message': "You're feeling fearful. Take a moment to breathe and relax. 😨",
'articles': [
"[Mindfulness Practices](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)",
"[Coping with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
],
'videos': "[Watch Coping Video](https://youtu.be/yGKKz185M5o)"
},
'sadness': {
'message': "You're feeling sad. It's okay to take a break. πŸ˜”",
'articles': [
"[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)",
"[Dealing with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
],
'videos': "[Watch Sadness Relief Video](https://youtu.be/-e-4Kx5px_I)"
},
'surprise': {
'message': "You're feeling surprised. It's okay to feel neutral! 😲",
'articles': [
"[Managing Stress](https://www.health.harvard.edu/health-a-to-z)",
"[Coping Strategies](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
],
'videos': "[Watch Stress Relief Video](https://youtu.be/m1vaUGtyo-A)"
}
}
return resources.get(emotion, {'message': "Stay calm. πŸ™‚", 'articles': [], 'videos': []})
# Function to find wellness professionals
def find_wellness_professionals(location, state):
# Geocode the location to get latitude and longitude
g = geocoder.osm(location) # Using OpenStreetMap's geocoding service
if g.ok:
location_coords = f"{g.lat},{g.lng}"
else:
return "Sorry, could not retrieve coordinates for the location. Please try again.", state
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist in " + location
api_key = "GOOGLE_API_KEY" # Replace with your own API key
radius = 50000 # 50 km radius
google_places_data = get_all_places(query, location_coords, radius, api_key)
if google_places_data:
response = "Wellness professionals near you:\n"
for place in google_places_data:
response += f"- {place['name']} at {place['formatted_address']}\n"
else:
response = "Sorry, no wellness professionals found in your area. Please try another location."
return response, state
# Call Google Places API
def get_all_places(query, location, radius, api_key):
search_url = f"https://maps.googleapis.com/maps/api/place/textsearch/json?query={query}&location={location}&radius={radius}&key={api_key}"
response = requests.get(search_url).json()
if 'results' in response:
return response['results']
return []
# Gradio UI components
def create_ui():
with gr.Blocks() as demo:
state = gr.State()
chatbot = gr.Chatbot(elem_id="chatbot", label="Mental Health Chatbot")
message_input = gr.Textbox(placeholder="Ask me something...", label="Enter your message")
sentiment_output = gr.Textbox(placeholder="Sentiment result", label="Sentiment")
emotion_output = gr.Textbox(placeholder="Detected emotion", label="Emotion")
wellness_output = gr.Textbox(placeholder="Wellness professional list", label="Wellness Professionals")
message_input.submit(chat, [message_input, chatbot, state], [chatbot, chatbot, state])
message_input.submit(analyze_sentiment, [message_input, state], [sentiment_output, state])
sentiment_output.submit(detect_emotion, [sentiment_output, state], [emotion_output, wellness_output, state])
return demo
# Launch the Gradio interface
demo = create_ui()
demo.launch(debug=True)