Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,7 +13,7 @@ import googlemaps
|
|
13 |
import folium
|
14 |
import torch
|
15 |
|
16 |
-
# Disable GPU usage for TensorFlow
|
17 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
18 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
19 |
|
@@ -23,7 +23,7 @@ nltk.download("punkt")
|
|
23 |
# Initialize Lancaster Stemmer
|
24 |
stemmer = LancasterStemmer()
|
25 |
|
26 |
-
# Load intents
|
27 |
with open("intents.json") as file:
|
28 |
intents_data = json.load(file)
|
29 |
|
@@ -39,9 +39,11 @@ net = tflearn.regression(net)
|
|
39 |
chatbot_model = tflearn.DNN(net)
|
40 |
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
41 |
|
42 |
-
#
|
43 |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
44 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
|
|
|
|
45 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
46 |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
47 |
|
@@ -60,6 +62,7 @@ def bag_of_words(s, words):
|
|
60 |
return np.array(bag)
|
61 |
|
62 |
def chatbot(message, history):
|
|
|
63 |
history = history or []
|
64 |
try:
|
65 |
results = chatbot_model.predict([bag_of_words(message, words)])
|
@@ -71,8 +74,9 @@ def chatbot(message, history):
|
|
71 |
break
|
72 |
except Exception as e:
|
73 |
response = f"Error: {str(e)} π₯"
|
74 |
-
|
75 |
-
|
|
|
76 |
return history, response
|
77 |
|
78 |
# Sentiment analysis
|
@@ -107,7 +111,7 @@ def generate_suggestions(emotion):
|
|
107 |
["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
|
108 |
],
|
109 |
}
|
110 |
-
return suggestions.get(emotion, [["No suggestions available", ""
|
111 |
|
112 |
# Search professionals and generate map
|
113 |
def get_health_professionals_and_map(location, query):
|
@@ -130,17 +134,17 @@ def get_health_professionals_and_map(location, query):
|
|
130 |
|
131 |
# Main app function
|
132 |
def app_function(message, location, query, history):
|
133 |
-
chatbot_history, _ = chatbot(message, history)
|
134 |
-
sentiment = analyze_sentiment(message)
|
135 |
-
emotion = detect_emotion(message.lower())
|
136 |
-
suggestions = generate_suggestions(emotion)
|
137 |
-
professionals, map_html = get_health_professionals_and_map(location, query)
|
138 |
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
|
139 |
|
140 |
# Gradio app interface
|
141 |
with gr.Blocks() as app:
|
142 |
gr.Markdown("# π Well-Being Companion")
|
143 |
-
gr.Markdown("Empowering
|
144 |
|
145 |
with gr.Row():
|
146 |
user_message = gr.Textbox(label="Your Message", placeholder="Enter your message...")
|
@@ -148,19 +152,19 @@ with gr.Blocks() as app:
|
|
148 |
search_query = gr.Textbox(label="Query", placeholder="Search for professionals...")
|
149 |
submit_btn = gr.Button("Submit")
|
150 |
|
151 |
-
chatbot_box = gr.Chatbot(label="Chat History")
|
152 |
emotion_output = gr.Textbox(label="Detected Emotion")
|
153 |
sentiment_output = gr.Textbox(label="Detected Sentiment")
|
154 |
suggestions_output = gr.DataFrame(headers=["Title", "Links"], label="Suggestions")
|
155 |
map_output = gr.HTML(label="Nearby Professionals Map")
|
156 |
-
|
157 |
|
158 |
submit_btn.click(
|
159 |
app_function,
|
160 |
inputs=[user_message, user_location, search_query, chatbot_box],
|
161 |
outputs=[
|
162 |
chatbot_box, sentiment_output, emotion_output,
|
163 |
-
suggestions_output,
|
164 |
],
|
165 |
)
|
166 |
|
|
|
13 |
import folium
|
14 |
import torch
|
15 |
|
16 |
+
# Disable GPU usage for TensorFlow
|
17 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
18 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
19 |
|
|
|
23 |
# Initialize Lancaster Stemmer
|
24 |
stemmer = LancasterStemmer()
|
25 |
|
26 |
+
# Load chatbot intents and training data
|
27 |
with open("intents.json") as file:
|
28 |
intents_data = json.load(file)
|
29 |
|
|
|
39 |
chatbot_model = tflearn.DNN(net)
|
40 |
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
41 |
|
42 |
+
# Model for sentiment detection
|
43 |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
44 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
45 |
+
|
46 |
+
# Model for emotion detection
|
47 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
48 |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
49 |
|
|
|
62 |
return np.array(bag)
|
63 |
|
64 |
def chatbot(message, history):
|
65 |
+
"""Generate chatbot response and append to history (as tuples)."""
|
66 |
history = history or []
|
67 |
try:
|
68 |
results = chatbot_model.predict([bag_of_words(message, words)])
|
|
|
74 |
break
|
75 |
except Exception as e:
|
76 |
response = f"Error: {str(e)} π₯"
|
77 |
+
|
78 |
+
# Append the message and response as a tuple
|
79 |
+
history.append((message, response))
|
80 |
return history, response
|
81 |
|
82 |
# Sentiment analysis
|
|
|
111 |
["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>'],
|
112 |
],
|
113 |
}
|
114 |
+
return suggestions.get(emotion, [["No suggestions available", ""]])
|
115 |
|
116 |
# Search professionals and generate map
|
117 |
def get_health_professionals_and_map(location, query):
|
|
|
134 |
|
135 |
# Main app function
|
136 |
def app_function(message, location, query, history):
|
137 |
+
chatbot_history, _ = chatbot(message, history) # Generate chatbot response
|
138 |
+
sentiment = analyze_sentiment(message) # Detect sentiment
|
139 |
+
emotion = detect_emotion(message.lower()) # Detect emotion
|
140 |
+
suggestions = generate_suggestions(emotion) # Generate suggestions
|
141 |
+
professionals, map_html = get_health_professionals_and_map(location, query) # Find professionals & map
|
142 |
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
|
143 |
|
144 |
# Gradio app interface
|
145 |
with gr.Blocks() as app:
|
146 |
gr.Markdown("# π Well-Being Companion")
|
147 |
+
gr.Markdown("Empowering Your Mental Health Journey π")
|
148 |
|
149 |
with gr.Row():
|
150 |
user_message = gr.Textbox(label="Your Message", placeholder="Enter your message...")
|
|
|
152 |
search_query = gr.Textbox(label="Query", placeholder="Search for professionals...")
|
153 |
submit_btn = gr.Button("Submit")
|
154 |
|
155 |
+
chatbot_box = gr.Chatbot(label="Chat History") # Corrected history format (list of tuples)
|
156 |
emotion_output = gr.Textbox(label="Detected Emotion")
|
157 |
sentiment_output = gr.Textbox(label="Detected Sentiment")
|
158 |
suggestions_output = gr.DataFrame(headers=["Title", "Links"], label="Suggestions")
|
159 |
map_output = gr.HTML(label="Nearby Professionals Map")
|
160 |
+
professional_display = gr.Textbox(label="Nearby Professionals", lines=5)
|
161 |
|
162 |
submit_btn.click(
|
163 |
app_function,
|
164 |
inputs=[user_message, user_location, search_query, chatbot_box],
|
165 |
outputs=[
|
166 |
chatbot_box, sentiment_output, emotion_output,
|
167 |
+
suggestions_output, professional_display, map_output,
|
168 |
],
|
169 |
)
|
170 |
|