Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -108,8 +108,13 @@ def chat(message, history, state):
|
|
108 |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
109 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
110 |
|
|
|
111 |
# Function for sentiment analysis
|
112 |
def analyze_sentiment(text, state):
|
|
|
|
|
|
|
|
|
113 |
inputs = tokenizer(text, return_tensors="pt")
|
114 |
with torch.no_grad():
|
115 |
outputs = sentiment_model(**inputs)
|
@@ -224,9 +229,10 @@ def get_all_places(query, location, radius, api_key):
|
|
224 |
return []
|
225 |
|
226 |
# Gradio UI components
|
|
|
227 |
def create_ui():
|
228 |
with gr.Blocks() as demo:
|
229 |
-
state = gr.State()
|
230 |
chatbot = gr.Chatbot(elem_id="chatbot", label="Mental Health Chatbot")
|
231 |
message_input = gr.Textbox(placeholder="Ask me something...", label="Enter your message")
|
232 |
sentiment_output = gr.Textbox(placeholder="Sentiment result", label="Sentiment")
|
|
|
108 |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
109 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
110 |
|
111 |
+
# Function for sentiment analysis
|
112 |
# Function for sentiment analysis
|
113 |
def analyze_sentiment(text, state):
|
114 |
+
# Initialize state if it's None
|
115 |
+
if state is None:
|
116 |
+
state = {'step': 1}
|
117 |
+
|
118 |
inputs = tokenizer(text, return_tensors="pt")
|
119 |
with torch.no_grad():
|
120 |
outputs = sentiment_model(**inputs)
|
|
|
229 |
return []
|
230 |
|
231 |
# Gradio UI components
|
232 |
+
# Function to create the UI with state initialization
|
233 |
def create_ui():
|
234 |
with gr.Blocks() as demo:
|
235 |
+
state = gr.State({'step': 1}) # Initialize state with a default value
|
236 |
chatbot = gr.Chatbot(elem_id="chatbot", label="Mental Health Chatbot")
|
237 |
message_input = gr.Textbox(placeholder="Ask me something...", label="Enter your message")
|
238 |
sentiment_output = gr.Textbox(placeholder="Sentiment result", label="Sentiment")
|