Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,22 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import nltk
|
3 |
import numpy as np
|
4 |
import tflearn
|
5 |
-
import
|
6 |
-
import
|
7 |
-
import
|
8 |
-
import
|
|
|
|
|
9 |
from nltk.tokenize import word_tokenize
|
10 |
from nltk.stem.lancaster import LancasterStemmer
|
11 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
12 |
-
import requests
|
13 |
-
import pandas as pd
|
14 |
|
15 |
# Ensure necessary NLTK resources are downloaded
|
16 |
nltk.download('punkt')
|
@@ -61,7 +67,7 @@ def bag_of_words(s, words):
|
|
61 |
def chat(message, history):
|
62 |
history = history or []
|
63 |
message = message.lower()
|
64 |
-
|
65 |
try:
|
66 |
# Predict the tag
|
67 |
results = model.predict([bag_of_words(message, words)])
|
@@ -78,7 +84,7 @@ def chat(message, history):
|
|
78 |
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
|
79 |
except Exception as e:
|
80 |
response = f"An error occurred: {str(e)}"
|
81 |
-
|
82 |
history.append((message, response))
|
83 |
return history, history
|
84 |
|
@@ -146,13 +152,26 @@ def provide_suggestions(emotion):
|
|
146 |
"Article URL": "https://www.health.harvard.edu/health-a-to-z",
|
147 |
"Video URL": "https://youtu.be/m1vaUGtyo-A"
|
148 |
}, ignore_index=True)
|
149 |
-
|
150 |
return suggestions
|
151 |
|
152 |
# Google Places API to get nearby wellness professionals
|
153 |
-
api_key = "
|
154 |
-
|
155 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
|
157 |
params = {
|
158 |
"query": query,
|
@@ -160,62 +179,48 @@ def get_places_data(query, location, radius, api_key, next_page_token=None):
|
|
160 |
"radius": radius,
|
161 |
"key": api_key
|
162 |
}
|
163 |
-
if next_page_token:
|
164 |
-
params["pagetoken"] = next_page_token
|
165 |
response = requests.get(url, params=params)
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
return
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
# Stage 3: Emotion Detection and Suggestions
|
209 |
-
emotion = detect_emotion(message)
|
210 |
-
suggestions = provide_suggestions(emotion)
|
211 |
-
|
212 |
-
# Stage 4: Search for Wellness Professionals
|
213 |
-
wellness_results = search_wellness_professionals(location)
|
214 |
-
|
215 |
-
# Return the results in a tabular form within the Gradio interface
|
216 |
-
return history, sentiment, emotion, suggestions, wellness_results, history # Last 'history' is for state
|
217 |
-
|
218 |
-
# Gradio interface setup
|
219 |
iface = gr.Interface(
|
220 |
fn=gradio_interface,
|
221 |
inputs=[
|
@@ -224,11 +229,11 @@ iface = gr.Interface(
|
|
224 |
gr.State() # One state input
|
225 |
],
|
226 |
outputs=[
|
227 |
-
gr.Chatbot(label="Chat History", type="messages"), # Set type="messages"
|
228 |
gr.Textbox(label="Sentiment Analysis"),
|
229 |
gr.Textbox(label="Detected Emotion"),
|
230 |
gr.Dataframe(label="Suggestions & Resources"),
|
231 |
-
gr.Dataframe(label="Nearby Wellness Professionals"),
|
232 |
gr.State() # One state output
|
233 |
],
|
234 |
allow_flagging="never",
|
@@ -236,5 +241,4 @@ iface = gr.Interface(
|
|
236 |
description="This app provides a mental health chatbot, sentiment analysis, emotion detection, and wellness professional search functionality.",
|
237 |
)
|
238 |
|
239 |
-
# Launch
|
240 |
-
iface.launch(debug=True, share=True) # Set share=True to create a public link
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
+
import time
|
4 |
+
import re
|
5 |
+
import csv
|
6 |
+
import json
|
7 |
+
import random
|
8 |
import nltk
|
9 |
import numpy as np
|
10 |
import tflearn
|
11 |
+
import os
|
12 |
+
from selenium import webdriver
|
13 |
+
from selenium.webdriver.chrome.options import Options
|
14 |
+
from bs4 import BeautifulSoup
|
15 |
+
import chromedriver_autoinstaller
|
16 |
+
import pandas as pd
|
17 |
from nltk.tokenize import word_tokenize
|
18 |
from nltk.stem.lancaster import LancasterStemmer
|
19 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
|
|
|
|
20 |
|
21 |
# Ensure necessary NLTK resources are downloaded
|
22 |
nltk.download('punkt')
|
|
|
67 |
def chat(message, history):
|
68 |
history = history or []
|
69 |
message = message.lower()
|
70 |
+
|
71 |
try:
|
72 |
# Predict the tag
|
73 |
results = model.predict([bag_of_words(message, words)])
|
|
|
84 |
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
|
85 |
except Exception as e:
|
86 |
response = f"An error occurred: {str(e)}"
|
87 |
+
|
88 |
history.append((message, response))
|
89 |
return history, history
|
90 |
|
|
|
152 |
"Article URL": "https://www.health.harvard.edu/health-a-to-z",
|
153 |
"Video URL": "https://youtu.be/m1vaUGtyo-A"
|
154 |
}, ignore_index=True)
|
155 |
+
|
156 |
return suggestions
|
157 |
|
158 |
# Google Places API to get nearby wellness professionals
|
159 |
+
api_key = "YOUR_GOOGLE_API_KEY" # Replace with your actual API key
|
160 |
+
|
161 |
+
def install_chrome_and_driver():
|
162 |
+
os.system("apt-get update")
|
163 |
+
os.system("apt-get install -y wget curl")
|
164 |
+
os.system("wget -q https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb")
|
165 |
+
os.system("dpkg -i google-chrome-stable_current_amd64.deb")
|
166 |
+
os.system("apt-get install -y -f")
|
167 |
+
os.system("google-chrome-stable --version")
|
168 |
+
chromedriver_autoinstaller.install()
|
169 |
+
|
170 |
+
# Install Chrome and Chromedriver
|
171 |
+
install_chrome_and_driver()
|
172 |
+
|
173 |
+
# Fetch places data using Google Places API
|
174 |
+
def get_places_data(query, location, radius, api_key):
|
175 |
url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
|
176 |
params = {
|
177 |
"query": query,
|
|
|
179 |
"radius": radius,
|
180 |
"key": api_key
|
181 |
}
|
|
|
|
|
182 |
response = requests.get(url, params=params)
|
183 |
+
if response.status_code == 200:
|
184 |
+
return response.json()
|
185 |
+
return None
|
186 |
+
|
187 |
+
# Scrape website URL from Google Maps results (using Selenium)
|
188 |
+
def scrape_website_from_google_maps(place_name):
|
189 |
+
chrome_options = Options()
|
190 |
+
chrome_options.add_argument("--headless")
|
191 |
+
chrome_options.add_argument("--no-sandbox")
|
192 |
+
chrome_options.add_argument("--disable-dev-shm-usage")
|
193 |
+
driver = webdriver.Chrome(options=chrome_options)
|
194 |
+
search_url = f"https://www.google.com/maps/search/{place_name.replace(' ', '+')}"
|
195 |
+
driver.get(search_url)
|
196 |
+
time.sleep(5)
|
197 |
+
try:
|
198 |
+
website_element = driver.find_element_by_xpath('//a[contains(@aria-label, "Visit") and contains(@aria-label, "website")]')
|
199 |
+
website_url = website_element.get_attribute('href')
|
200 |
+
except:
|
201 |
+
website_url = "Not available"
|
202 |
+
driver.quit()
|
203 |
+
return website_url
|
204 |
+
|
205 |
+
# Get all wellness professionals based on the location
|
206 |
+
def get_wellness_professionals(location):
|
207 |
+
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner"
|
208 |
+
radius = 50000 # 50 km radius
|
209 |
+
data = get_places_data(query, location, radius, api_key)
|
210 |
+
if data:
|
211 |
+
results = data.get('results', [])
|
212 |
+
wellness_data = []
|
213 |
+
for place in results:
|
214 |
+
name = place.get('name')
|
215 |
+
address = place.get('formatted_address')
|
216 |
+
website = place.get('website', 'Not available')
|
217 |
+
if website == 'Not available':
|
218 |
+
website = scrape_website_from_google_maps(name)
|
219 |
+
wellness_data.append([name, address, website])
|
220 |
+
return pd.DataFrame(wellness_data, columns=["Name", "Address", "Website"])
|
221 |
+
return pd.DataFrame()
|
222 |
+
|
223 |
+
# Gradio Interface Setup
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
iface = gr.Interface(
|
225 |
fn=gradio_interface,
|
226 |
inputs=[
|
|
|
229 |
gr.State() # One state input
|
230 |
],
|
231 |
outputs=[
|
232 |
+
gr.Chatbot(label="Chat History", type="messages"), # Set type="messages"
|
233 |
gr.Textbox(label="Sentiment Analysis"),
|
234 |
gr.Textbox(label="Detected Emotion"),
|
235 |
gr.Dataframe(label="Suggestions & Resources"),
|
236 |
+
gr.Dataframe(label="Nearby Wellness Professionals"),
|
237 |
gr.State() # One state output
|
238 |
],
|
239 |
allow_flagging="never",
|
|
|
241 |
description="This app provides a mental health chatbot, sentiment analysis, emotion detection, and wellness professional search functionality.",
|
242 |
)
|
243 |
|
244 |
+
iface.launch(debug=True, share=True) # Launch with share=True to create a public link
|
|