DreamStream-1 commited on
Commit
334ba26
·
verified ·
1 Parent(s): 5bd69d1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +180 -141
app.py CHANGED
@@ -1,154 +1,193 @@
1
- import gradio as gr
 
2
  import random
 
 
 
 
3
  import requests
 
 
 
 
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
 
 
 
 
 
 
5
 
6
- # Replace with your Google Maps API and Places API Key
7
- GOOGLE_API_KEY = "GOOGLE_API_KEY"
8
-
9
- # Load pre-trained models for sentiment and emotion detection
10
- tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
11
- sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
12
- emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
13
- emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
14
-
15
- # Function to get latitude and longitude from city using Google Maps Geocoding API
16
- def get_lat_lng_from_city(city):
17
- geocode_url = f"https://maps.googleapis.com/maps/api/geocode/json?address={city}&key={GOOGLE_API_KEY}"
18
- response = requests.get(geocode_url)
19
- data = response.json()
20
- if data["status"] == "OK":
21
- lat_lng = data["results"][0]["geometry"]["location"]
22
- return lat_lng["lat"], lat_lng["lng"]
23
- else:
24
- return None, None
25
 
26
- # Function to get wellness professionals using Google Places API
27
- def get_wellness_professionals(location):
28
- lat, lng = get_lat_lng_from_city(location)
29
- if lat and lng:
30
- places_url = f"https://maps.googleapis.com/maps/api/place/nearbysearch/json?location={lat},{lng}&radius=5000&type=health&key={GOOGLE_API_KEY}"
31
- response = requests.get(places_url)
32
- data = response.json()
33
- professionals = []
34
- if 'results' in data:
35
- for place in data['results']:
36
- name = place['name']
37
- address = place.get('vicinity', 'No address available')
38
- url = place.get('website', '#')
39
- professionals.append(f"**{name}** - {address} - [Visit Website]({url})")
40
-
41
- if not professionals:
42
- professionals.append("No wellness professionals found nearby.")
43
- return "\n".join(professionals)
44
- else:
45
- return "Couldn't fetch your location. Please make sure you entered a valid location."
46
-
47
- # Function for sentiment analysis
48
- def analyze_sentiment(text, state):
49
- inputs = tokenizer(text, return_tensors="pt")
50
- with torch.no_grad():
51
- outputs = sentiment_model(**inputs)
52
- predicted_class = torch.argmax(outputs.logits, dim=1).item()
53
- sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
54
 
55
- # Add emoticon to sentiment
56
- sentiment_emojis = {
57
- "Negative": "😞",
58
- "Neutral": "😐",
59
- "Positive": "😊"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  }
61
- sentiment_with_emoji = f"{sentiment} {sentiment_emojis.get(sentiment, '😐')}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- # Transition to emotion detection
64
- state['step'] = 3 # Move to emotion detection and suggestions
65
- return sentiment_with_emoji, state
66
-
67
- # Function for emotion detection and suggestions
68
- def detect_emotion(text, state):
69
- pipe = pipeline("text-classification", model=emotion_model, tokenizer=emotion_tokenizer)
70
- result = pipe(text)
71
- emotion = result[0]['label']
72
 
73
- # Provide suggestions based on detected emotion
74
- suggestions = provide_suggestions(emotion)
 
 
75
 
76
- # Transition to wellness professional search
77
- state['step'] = 4 # Move to wellness professional search
78
- return emotion, suggestions, state
79
-
80
- # Suggestions based on detected emotion
81
- def provide_suggestions(emotion):
82
- resources = {
83
- 'joy': {
84
- 'message': "You're feeling happy! Keep up the great mood! 😊",
85
- 'articles': [
86
- "[Relaxation Techniques](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)",
87
- "[Dealing with Stress](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
88
- ],
89
- 'videos': "[Watch Relaxation Video](https://youtu.be/m1vaUGtyo-A)"
90
- },
91
- 'anger': {
92
- 'message': "You're feeling angry. It's okay to feel this way. Let's try to calm down. 😡",
93
- 'articles': [
94
- "[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)",
95
- "[Stress Management Tips](https://www.health.harvard.edu/health-a-to-z)"
96
- ],
97
- 'videos': "[Watch Anger Management Video](https://youtu.be/MIc299Flibs)"
98
- },
99
- 'fear': {
100
- 'message': "You're feeling fearful. Take a moment to breathe and relax. 😨",
101
- 'articles': [
102
- "[Mindfulness Practices](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)",
103
- "[Coping with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
104
- ],
105
- 'videos': "[Watch Coping Video](https://youtu.be/yGKKz185M5o)"
106
- },
107
- 'sadness': {
108
- 'message': "You're feeling sad. It's okay to take a break. 😔",
109
- 'articles': [
110
- "[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)",
111
- "[Dealing with Anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
112
- ],
113
- 'videos': "[Watch Sadness Relief Video](https://youtu.be/-e-4Kx5px_I)"
114
- },
115
- 'surprise': {
116
- 'message': "You're feeling surprised. It's okay to feel neutral! 😲",
117
- 'articles': [
118
- "[Managing Stress](https://www.health.harvard.edu/health-a-to-z)",
119
- "[Coping Strategies](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)"
120
- ],
121
- 'videos': "[Watch Stress Relief Video](https://youtu.be/m1vaUGtyo-A)"
122
- }
123
- }
124
 
125
- # Ensure we return a message even if no articles/videos are found
126
- return resources.get(emotion, {'message': "Stay calm. 🙂", 'articles': ["[General Wellbeing Tips](https://www.helpguide.org)"], 'videos': []})
127
-
128
- # Function to ask for location and provide wellness professionals
129
- def search_wellness_professionals(location, state):
130
- professionals = get_wellness_professionals(location)
131
- state['step'] = 5 # Move to the next step
132
- return professionals, state
133
-
134
- # Create the UI with location input for wellness professionals
135
- def create_ui():
136
- with gr.Blocks() as demo:
137
- state = gr.State({'step': 1})
138
- chatbot = gr.Chatbot(elem_id="chatbot", label="Mental Health Chatbot")
139
- message_input = gr.Textbox(placeholder="Ask me something...", label="Enter your message")
140
- sentiment_output = gr.Textbox(placeholder="Sentiment result", label="Sentiment")
141
- emotion_output = gr.Textbox(placeholder="Detected emotion", label="Emotion")
142
- wellness_output = gr.Textbox(placeholder="Wellness professionals nearby", label="Wellness Professionals")
143
- location_input = gr.Textbox(placeholder="Enter your city for wellness professionals", label="Location")
144
-
145
- message_input.submit(chat, [message_input, chatbot, state], [chatbot, chatbot, state])
146
- message_input.submit(analyze_sentiment, [message_input, state], [sentiment_output, state])
147
- sentiment_output.submit(detect_emotion, [sentiment_output, state], [emotion_output, wellness_output, state])
148
- location_input.submit(search_wellness_professionals, [location_input, state], [wellness_output, state])
149
-
150
- return demo
151
 
152
  # Launch Gradio interface
153
- demo = create_ui()
154
- demo.launch(debug=True)
 
1
+ import json
2
+ import pickle
3
  import random
4
+ import nltk
5
+ import numpy as np
6
+ import tflearn
7
+ import gradio as gr
8
  import requests
9
+ import time
10
+ from bs4 import BeautifulSoup
11
+ from selenium import webdriver
12
+ from selenium.webdriver.chrome.options import Options
13
  from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
14
+ import torch
15
+ import pandas as pd
16
+ import os
17
+ import chromedriver_autoinstaller
18
+ from nltk.tokenize import word_tokenize
19
+ from nltk.stem.lancaster import LancasterStemmer
20
 
21
+ # Ensure necessary NLTK resources are downloaded
22
+ nltk.download('punkt')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ # Initialize the stemmer
25
+ stemmer = LancasterStemmer()
26
+
27
+ # Load intents.json
28
+ try:
29
+ with open("intents.json") as file:
30
+ data = json.load(file)
31
+ except FileNotFoundError:
32
+ raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.")
33
+
34
+ # Load preprocessed data from pickle
35
+ try:
36
+ with open("data.pickle", "rb") as f:
37
+ words, labels, training, output = pickle.load(f)
38
+ except FileNotFoundError:
39
+ raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.")
40
+
41
+ # Build the model structure
42
+ net = tflearn.input_data(shape=[None, len(training[0])])
43
+ net = tflearn.fully_connected(net, 8)
44
+ net = tflearn.fully_connected(net, 8)
45
+ net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
46
+ net = tflearn.regression(net)
47
+
48
+ # Load the trained model
49
+ model = tflearn.DNN(net)
50
+ try:
51
+ model.load("MentalHealthChatBotmodel.tflearn")
52
+ except FileNotFoundError:
53
+ raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.")
54
+
55
+ # Function to process user input into a bag-of-words format
56
+ def bag_of_words(s, words):
57
+ bag = [0 for _ in range(len(words))]
58
+ s_words = word_tokenize(s)
59
+ s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words]
60
+ for se in s_words:
61
+ for i, w in enumerate(words):
62
+ if w == se:
63
+ bag[i] = 1
64
+ return np.array(bag)
65
+
66
+ # Chat function
67
+ def chat(message, history):
68
+ history = history or []
69
+ message = message.lower()
70
+
71
+ try:
72
+ # Predict the tag
73
+ results = model.predict([bag_of_words(message, words)])
74
+ results_index = np.argmax(results)
75
+ tag = labels[results_index]
76
+
77
+ # Match tag with intent and choose a random response
78
+ for tg in data["intents"]:
79
+ if tg['tag'] == tag:
80
+ responses = tg['responses']
81
+ response = random.choice(responses)
82
+ break
83
+ else:
84
+ response = "I'm sorry, I didn't understand that. Could you please rephrase?"
85
+
86
+ except Exception as e:
87
+ response = f"An error occurred: {str(e)}"
88
 
89
+ history.append((message, response))
90
+ return history, history
91
+
92
+
93
+ # Sentiment analysis setup
94
+ tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
95
+ model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
96
+
97
+ # Emotion detection setup
98
+ @st.cache_resource
99
+ def load_emotion_model():
100
+ tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
101
+ model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
102
+ return tokenizer, model
103
+
104
+ tokenizer_emotion, model_emotion = load_emotion_model()
105
+
106
+ # Google Places API setup for wellness professionals
107
+ url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
108
+ places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"
109
+ api_key = "GOOGLE_API_KEY"
110
+
111
+ # Install Chrome and Chromedriver for web scraping
112
+ def install_chrome_and_driver():
113
+ os.system("apt-get update")
114
+ os.system("apt-get install -y wget curl")
115
+ os.system("wget -q https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb")
116
+ os.system("dpkg -i google-chrome-stable_current_amd64.deb")
117
+ os.system("apt-get install -y -f")
118
+ os.system("google-chrome-stable --version")
119
+ chromedriver_autoinstaller.install()
120
+
121
+ install_chrome_and_driver()
122
+
123
+ # Function to get places data using Google Places API
124
+ def get_places_data(query, location, radius, api_key, next_page_token=None):
125
+ params = {
126
+ "query": query,
127
+ "location": location,
128
+ "radius": radius,
129
+ "key": api_key
130
  }
131
+
132
+ if next_page_token:
133
+ params["pagetoken"] = next_page_token
134
+
135
+ response = requests.get(url, params=params)
136
+ if response.status_code == 200:
137
+ return response.json()
138
+ else:
139
+ return None
140
+
141
+ # Main function to fetch wellness professional data and display on map
142
+ def get_wellness_professionals(location):
143
+ query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"
144
+ radius = 50000 # 50 km radius
145
+ data = get_places_data(query, location, radius, api_key)
146
+
147
+ if data:
148
+ results = data.get('results', [])
149
+ wellness_data = []
150
+ for place in results:
151
+ name = place.get("name")
152
+ address = place.get("formatted_address")
153
+ latitude = place.get("geometry", {}).get("location", {}).get("lat")
154
+ longitude = place.get("geometry", {}).get("location", {}).get("lng")
155
+ wellness_data.append([name, address, latitude, longitude])
156
+ return wellness_data
157
+ return []
158
+
159
+ # Gradio interface setup for user interaction
160
+ def user_interface(message, location, history):
161
+ history, history = chat(message, history)
162
 
163
+ # Sentiment analysis
164
+ inputs = tokenizer_sentiment(message, return_tensors="pt")
165
+ outputs = model_sentiment(**inputs)
166
+ sentiment = ["Negative", "Neutral", "Positive"][torch.argmax(outputs.logits, dim=1).item()]
 
 
 
 
 
167
 
168
+ # Emotion detection
169
+ pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
170
+ emotion_result = pipe(message)
171
+ emotion = emotion_result[0]['label']
172
 
173
+ # Get wellness professionals
174
+ wellness_data = get_wellness_professionals(location)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175
 
176
+ return history, history, sentiment, emotion, wellness_data
177
+
178
+ # Gradio chatbot interface
179
+ chatbot = gr.Chatbot(label="Mental Health Chatbot")
180
+ location_input = gr.Textbox(label="Enter your location (latitude,longitude)", placeholder="e.g., 21.3,-157.8")
181
+
182
+ # Gradio interface definition
183
+ demo = gr.Interface(
184
+ user_interface,
185
+ [gr.Textbox(label="Message"), location_input, "state"],
186
+ [chatbot, "state", "text", "text", "json"],
187
+ allow_flagging="never",
188
+ title="Mental Health & Well-being Assistant"
189
+ )
 
 
 
 
 
 
 
 
 
 
 
 
190
 
191
  # Launch Gradio interface
192
+ if __name__ == "__main__":
193
+ demo.launch()