DreamStream-1 commited on
Commit
460d854
·
verified ·
1 Parent(s): 0b02caa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +22 -14
app.py CHANGED
@@ -60,31 +60,39 @@ def load_data():
60
  except FileNotFoundError:
61
  raise RuntimeError("Data files not found. Please ensure `Training.csv` and `Testing.csv` are uploaded correctly.")
62
 
63
- # Encode diseases
64
  disease_dict = {
65
  'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
66
- 'Peptic ulcer diseae': 5, 'AIDS': 6, 'Diabetes': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
67
- 'Hypertension': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis (brain hemorrhage)': 13,
68
- 'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18, 'Hepatitis A': 19,
69
- 'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23, 'Alcoholic hepatitis': 24,
70
- 'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27, 'Dimorphic hemorrhoids(piles)': 28,
71
- 'Heart attack': 29, 'Varicose veins': 30, 'Hypothyroidism': 31, 'Hyperthyroidism': 32,
72
- 'Hypoglycemia': 33, 'Osteoarthritis': 34, 'Arthritis': 35,
73
- '(vertigo) Paroxysmal Positional Vertigo': 36, 'Acne': 37, 'Urinary tract infection': 38,
74
- 'Psoriasis': 39, 'Impetigo': 40
75
  }
76
 
77
  # Replace prognosis values with numerical categories
78
  df.replace({'prognosis': disease_dict}, inplace=True)
79
 
 
 
 
80
  # Ensure prognosis is purely numerical after mapping
81
  df['prognosis'] = df['prognosis'].astype(int) # Convert to integer if necessary
82
 
83
- df = df.infer_objects() # Removed 'copy' argument
 
84
 
85
  tr.replace({'prognosis': disease_dict}, inplace=True)
86
- tr['prognosis'] = tr['prognosis'].astype(int) # Ensure it is also numerical
87
- tr = tr.infer_objects() # Remove 'copy' argument
 
 
 
 
88
 
89
  return df, tr, disease_dict
90
 
@@ -194,7 +202,7 @@ def detect_emotion(user_input):
194
  def generate_suggestions(emotion):
195
  emotion_key = emotion.lower()
196
  suggestions = {
197
- # Define suggestions based on the emotion detected
198
  }
199
 
200
  formatted_suggestions = [
 
60
  except FileNotFoundError:
61
  raise RuntimeError("Data files not found. Please ensure `Training.csv` and `Testing.csv` are uploaded correctly.")
62
 
63
+ # Encode diseases in a dictionary
64
  disease_dict = {
65
  'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
66
+ 'Peptic ulcer disease': 5, 'AIDS': 6, 'Diabetes': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
67
+ 'Hypertension': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis': 13,
68
+ 'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18,
69
+ 'Hepatitis A': 19, 'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23,
70
+ 'Alcoholic hepatitis': 24, 'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27,
71
+ 'Heart attack': 28, 'Varicose veins': 29, 'Hypothyroidism': 30, 'Hyperthyroidism': 31,
72
+ 'Hypoglycemia': 32, 'Osteoarthritis': 33, 'Arthritis': 34,
73
+ '(vertigo) Paroxysmal Positional Vertigo': 35, 'Acne': 36, 'Urinary tract infection': 37,
74
+ 'Psoriasis': 38, 'Impetigo': 39
75
  }
76
 
77
  # Replace prognosis values with numerical categories
78
  df.replace({'prognosis': disease_dict}, inplace=True)
79
 
80
+ # Check unique values in the prognosis column to capture any unmapped entries
81
+ print("Unique values in prognosis after mapping:", df['prognosis'].unique())
82
+
83
  # Ensure prognosis is purely numerical after mapping
84
  df['prognosis'] = df['prognosis'].astype(int) # Convert to integer if necessary
85
 
86
+ # Inference doesn't require fixing as copy=True defaults
87
+ df = df.infer_objects()
88
 
89
  tr.replace({'prognosis': disease_dict}, inplace=True)
90
+
91
+ # Ensure it is also numerical
92
+ print("Unique values in prognosis for testing data after mapping:", tr['prognosis'].unique())
93
+
94
+ tr['prognosis'] = tr['prognosis'].astype(int) # Convert to integer if necessary
95
+ tr = tr.infer_objects()
96
 
97
  return df, tr, disease_dict
98
 
 
202
  def generate_suggestions(emotion):
203
  emotion_key = emotion.lower()
204
  suggestions = {
205
+ # Define suggestions based on the detected emotion
206
  }
207
 
208
  formatted_suggestions = [