Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -60,31 +60,39 @@ def load_data():
|
|
60 |
except FileNotFoundError:
|
61 |
raise RuntimeError("Data files not found. Please ensure `Training.csv` and `Testing.csv` are uploaded correctly.")
|
62 |
|
63 |
-
# Encode diseases
|
64 |
disease_dict = {
|
65 |
'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
|
66 |
-
'Peptic ulcer
|
67 |
-
'Hypertension': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis
|
68 |
-
'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18,
|
69 |
-
'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23,
|
70 |
-
'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27,
|
71 |
-
'Heart attack':
|
72 |
-
'Hypoglycemia':
|
73 |
-
'(vertigo) Paroxysmal Positional Vertigo':
|
74 |
-
'Psoriasis':
|
75 |
}
|
76 |
|
77 |
# Replace prognosis values with numerical categories
|
78 |
df.replace({'prognosis': disease_dict}, inplace=True)
|
79 |
|
|
|
|
|
|
|
80 |
# Ensure prognosis is purely numerical after mapping
|
81 |
df['prognosis'] = df['prognosis'].astype(int) # Convert to integer if necessary
|
82 |
|
83 |
-
|
|
|
84 |
|
85 |
tr.replace({'prognosis': disease_dict}, inplace=True)
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
88 |
|
89 |
return df, tr, disease_dict
|
90 |
|
@@ -194,7 +202,7 @@ def detect_emotion(user_input):
|
|
194 |
def generate_suggestions(emotion):
|
195 |
emotion_key = emotion.lower()
|
196 |
suggestions = {
|
197 |
-
# Define suggestions based on the emotion
|
198 |
}
|
199 |
|
200 |
formatted_suggestions = [
|
|
|
60 |
except FileNotFoundError:
|
61 |
raise RuntimeError("Data files not found. Please ensure `Training.csv` and `Testing.csv` are uploaded correctly.")
|
62 |
|
63 |
+
# Encode diseases in a dictionary
|
64 |
disease_dict = {
|
65 |
'Fungal infection': 0, 'Allergy': 1, 'GERD': 2, 'Chronic cholestasis': 3, 'Drug Reaction': 4,
|
66 |
+
'Peptic ulcer disease': 5, 'AIDS': 6, 'Diabetes': 7, 'Gastroenteritis': 8, 'Bronchial Asthma': 9,
|
67 |
+
'Hypertension': 10, 'Migraine': 11, 'Cervical spondylosis': 12, 'Paralysis': 13,
|
68 |
+
'Jaundice': 14, 'Malaria': 15, 'Chicken pox': 16, 'Dengue': 17, 'Typhoid': 18,
|
69 |
+
'Hepatitis A': 19, 'Hepatitis B': 20, 'Hepatitis C': 21, 'Hepatitis D': 22, 'Hepatitis E': 23,
|
70 |
+
'Alcoholic hepatitis': 24, 'Tuberculosis': 25, 'Common Cold': 26, 'Pneumonia': 27,
|
71 |
+
'Heart attack': 28, 'Varicose veins': 29, 'Hypothyroidism': 30, 'Hyperthyroidism': 31,
|
72 |
+
'Hypoglycemia': 32, 'Osteoarthritis': 33, 'Arthritis': 34,
|
73 |
+
'(vertigo) Paroxysmal Positional Vertigo': 35, 'Acne': 36, 'Urinary tract infection': 37,
|
74 |
+
'Psoriasis': 38, 'Impetigo': 39
|
75 |
}
|
76 |
|
77 |
# Replace prognosis values with numerical categories
|
78 |
df.replace({'prognosis': disease_dict}, inplace=True)
|
79 |
|
80 |
+
# Check unique values in the prognosis column to capture any unmapped entries
|
81 |
+
print("Unique values in prognosis after mapping:", df['prognosis'].unique())
|
82 |
+
|
83 |
# Ensure prognosis is purely numerical after mapping
|
84 |
df['prognosis'] = df['prognosis'].astype(int) # Convert to integer if necessary
|
85 |
|
86 |
+
# Inference doesn't require fixing as copy=True defaults
|
87 |
+
df = df.infer_objects()
|
88 |
|
89 |
tr.replace({'prognosis': disease_dict}, inplace=True)
|
90 |
+
|
91 |
+
# Ensure it is also numerical
|
92 |
+
print("Unique values in prognosis for testing data after mapping:", tr['prognosis'].unique())
|
93 |
+
|
94 |
+
tr['prognosis'] = tr['prognosis'].astype(int) # Convert to integer if necessary
|
95 |
+
tr = tr.infer_objects()
|
96 |
|
97 |
return df, tr, disease_dict
|
98 |
|
|
|
202 |
def generate_suggestions(emotion):
|
203 |
emotion_key = emotion.lower()
|
204 |
suggestions = {
|
205 |
+
# Define suggestions based on the detected emotion
|
206 |
}
|
207 |
|
208 |
formatted_suggestions = [
|