Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -24,18 +24,12 @@ nltk.download('punkt')
|
|
24 |
stemmer = LancasterStemmer()
|
25 |
|
26 |
# Load intents.json for Well-Being Chatbot
|
27 |
-
|
28 |
-
|
29 |
-
data = json.load(file)
|
30 |
-
except FileNotFoundError:
|
31 |
-
print("Error: 'intents.json' file not found.")
|
32 |
|
33 |
# Load preprocessed data for Well-Being Chatbot
|
34 |
-
|
35 |
-
|
36 |
-
words, labels, training, output = pickle.load(f)
|
37 |
-
except FileNotFoundError:
|
38 |
-
print("Error: 'data.pickle' file not found.")
|
39 |
|
40 |
# Build the model structure for Well-Being Chatbot
|
41 |
net = tflearn.input_data(shape=[None, len(training[0])])
|
@@ -46,10 +40,7 @@ net = tflearn.regression(net)
|
|
46 |
|
47 |
# Load the trained model
|
48 |
model = tflearn.DNN(net)
|
49 |
-
|
50 |
-
model.load("MentalHealthChatBotmodel.tflearn")
|
51 |
-
except IOError:
|
52 |
-
print("Error: Model file not found or corrupted.")
|
53 |
|
54 |
# Function to process user input into a bag-of-words format for Chatbot
|
55 |
def bag_of_words(s, words):
|
@@ -94,63 +85,61 @@ tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-senti
|
|
94 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
95 |
|
96 |
def analyze_sentiment(user_input):
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
return f"Predicted Sentiment: {sentiment}"
|
104 |
-
except Exception as e:
|
105 |
-
return f"Sentiment analysis error: {str(e)}"
|
106 |
|
107 |
# Emotion Detection using Hugging Face model
|
108 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
109 |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
110 |
|
111 |
def detect_emotion(user_input):
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
return f"Emotion Detected: {emotion}"
|
117 |
-
except Exception as e:
|
118 |
-
return f"Emotion detection error: {str(e)}"
|
119 |
|
120 |
# Initialize Google Maps API client securely
|
121 |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
|
122 |
|
123 |
# Function to search for health professionals
|
124 |
def search_health_professionals(query, location, radius=10000):
|
125 |
-
|
126 |
-
|
127 |
-
if 'results' in places_result:
|
128 |
-
return places_result['results']
|
129 |
-
else:
|
130 |
-
return []
|
131 |
-
except Exception as e:
|
132 |
-
print(f"Error fetching health professionals: {str(e)}")
|
133 |
-
return []
|
134 |
|
135 |
# Function to get directions and display on Gradio UI
|
136 |
def get_health_professionals_and_map(current_location, health_professional_query):
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
# Function to generate suggestions based on the detected emotion
|
156 |
def generate_suggestions(emotion):
|
@@ -184,14 +173,55 @@ def generate_suggestions(emotion):
|
|
184 |
{"Title": "Relaxation Video", "Subject": "Video", "Link": "https://youtu.be/m1vaUGtyo-A"}
|
185 |
]
|
186 |
}
|
187 |
-
|
188 |
return suggestions.get(emotion.lower(), [])
|
189 |
|
190 |
-
#
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
197 |
iface.launch()
|
|
|
24 |
stemmer = LancasterStemmer()
|
25 |
|
26 |
# Load intents.json for Well-Being Chatbot
|
27 |
+
with open("intents.json") as file:
|
28 |
+
data = json.load(file)
|
|
|
|
|
|
|
29 |
|
30 |
# Load preprocessed data for Well-Being Chatbot
|
31 |
+
with open("data.pickle", "rb") as f:
|
32 |
+
words, labels, training, output = pickle.load(f)
|
|
|
|
|
|
|
33 |
|
34 |
# Build the model structure for Well-Being Chatbot
|
35 |
net = tflearn.input_data(shape=[None, len(training[0])])
|
|
|
40 |
|
41 |
# Load the trained model
|
42 |
model = tflearn.DNN(net)
|
43 |
+
model.load("MentalHealthChatBotmodel.tflearn")
|
|
|
|
|
|
|
44 |
|
45 |
# Function to process user input into a bag-of-words format for Chatbot
|
46 |
def bag_of_words(s, words):
|
|
|
85 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
86 |
|
87 |
def analyze_sentiment(user_input):
|
88 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
89 |
+
with torch.no_grad():
|
90 |
+
outputs = model_sentiment(**inputs)
|
91 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
92 |
+
sentiment = ["Negative", "Neutral", "Positive"][predicted_class] # Assuming 3 classes
|
93 |
+
return f"Predicted Sentiment: {sentiment}"
|
|
|
|
|
|
|
94 |
|
95 |
# Emotion Detection using Hugging Face model
|
96 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
97 |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
98 |
|
99 |
def detect_emotion(user_input):
|
100 |
+
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
101 |
+
result = pipe(user_input)
|
102 |
+
emotion = result[0]['label']
|
103 |
+
return f"Emotion Detected: {emotion}"
|
|
|
|
|
|
|
104 |
|
105 |
# Initialize Google Maps API client securely
|
106 |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
|
107 |
|
108 |
# Function to search for health professionals
|
109 |
def search_health_professionals(query, location, radius=10000):
|
110 |
+
places_result = gmaps.places_nearby(location, radius=radius, type='doctor', keyword=query)
|
111 |
+
return places_result.get('results', [])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
# Function to get directions and display on Gradio UI
|
114 |
def get_health_professionals_and_map(current_location, health_professional_query):
|
115 |
+
location = gmaps.geocode(current_location)
|
116 |
+
if location:
|
117 |
+
lat = location[0]["geometry"]["location"]["lat"]
|
118 |
+
lng = location[0]["geometry"]["location"]["lng"]
|
119 |
+
location = (lat, lng)
|
120 |
+
|
121 |
+
professionals = search_health_professionals(health_professional_query, location)
|
122 |
+
|
123 |
+
# Generate map
|
124 |
+
map_center = location
|
125 |
+
m = folium.Map(location=map_center, zoom_start=13)
|
126 |
+
|
127 |
+
# Add markers to the map
|
128 |
+
for place in professionals:
|
129 |
+
folium.Marker(
|
130 |
+
location=[place['geometry']['location']['lat'], place['geometry']['location']['lng']],
|
131 |
+
popup=place['name']
|
132 |
+
).add_to(m)
|
133 |
+
|
134 |
+
# Convert map to HTML for Gradio display
|
135 |
+
map_html = m._repr_html_()
|
136 |
+
|
137 |
+
# Route information
|
138 |
+
route_info = "\n".join([f"{place['name']} - {place['vicinity']}" for place in professionals])
|
139 |
+
|
140 |
+
return route_info, map_html
|
141 |
+
else:
|
142 |
+
return "Unable to find location.", ""
|
143 |
|
144 |
# Function to generate suggestions based on the detected emotion
|
145 |
def generate_suggestions(emotion):
|
|
|
173 |
{"Title": "Relaxation Video", "Subject": "Video", "Link": "https://youtu.be/m1vaUGtyo-A"}
|
174 |
]
|
175 |
}
|
|
|
176 |
return suggestions.get(emotion.lower(), [])
|
177 |
|
178 |
+
# Gradio interface
|
179 |
+
def gradio_app(message, location, health_query, submit_button, history, state):
|
180 |
+
# Chatbot interaction
|
181 |
+
history, _ = chatbot(message, history)
|
182 |
+
|
183 |
+
# Sentiment analysis
|
184 |
+
sentiment_response = analyze_sentiment(message)
|
185 |
+
|
186 |
+
# Emotion detection
|
187 |
+
emotion_response = detect_emotion(message)
|
188 |
+
|
189 |
+
# Health professional search and map display
|
190 |
+
route_info, map_html = get_health_professionals_and_map(location, health_query)
|
191 |
+
|
192 |
+
# Generate suggestions based on the detected emotion
|
193 |
+
suggestions = generate_suggestions(emotion_response.split(': ')[1])
|
194 |
+
|
195 |
+
# Create a DataFrame for displaying suggestions
|
196 |
+
suggestions_df = pd.DataFrame(suggestions)
|
197 |
+
|
198 |
+
return history, sentiment_response, emotion_response, route_info, map_html, gr.DataFrame(suggestions_df, headers=["Title", "Subject", "Link"]), state
|
199 |
+
|
200 |
+
# Gradio UI components
|
201 |
+
message_input = gr.Textbox(lines=1, label="Message")
|
202 |
+
location_input = gr.Textbox(value="Honolulu, HI", label="Current Location")
|
203 |
+
health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, psychiatrist, psychologist)")
|
204 |
+
submit_button = gr.Button("Submit") # Submit button
|
205 |
+
|
206 |
+
# Updated chat history component with 'messages' type
|
207 |
+
chat_history = gr.Chatbot(label="Well-Being Chat History", type='messages')
|
208 |
+
|
209 |
+
# Outputs
|
210 |
+
sentiment_output = gr.Textbox(label="Sentiment Analysis Result")
|
211 |
+
emotion_output = gr.Textbox(label="Emotion Detection Result")
|
212 |
+
route_info_output = gr.Textbox(label="Health Professionals Information")
|
213 |
+
map_output = gr.HTML(label="Map with Health Professionals")
|
214 |
+
suggestions_output = gr.DataFrame(label="Well-Being Suggestions", headers=["Title", "Subject", "Link"])
|
215 |
+
|
216 |
+
# Create Gradio interface
|
217 |
+
iface = gr.Interface(
|
218 |
+
fn=gradio_app,
|
219 |
+
inputs=[message_input, location_input, health_query_input, submit_button, gr.State()],
|
220 |
+
outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output, gr.State()],
|
221 |
+
allow_flagging="never",
|
222 |
+
live=True,
|
223 |
+
title="Well-Being App: Support, Sentiment, Emotion Detection & Health Professional Search"
|
224 |
+
)
|
225 |
+
|
226 |
+
# Launch the Gradio interface
|
227 |
iface.launch()
|