Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,18 +6,13 @@ import numpy as np
|
|
6 |
import tflearn
|
7 |
import gradio as gr
|
8 |
import requests
|
9 |
-
import time
|
10 |
-
from bs4 import BeautifulSoup
|
11 |
-
from selenium import webdriver
|
12 |
-
from selenium.webdriver.chrome.options import Options
|
13 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
14 |
import torch
|
15 |
import pandas as pd
|
16 |
-
import
|
17 |
-
import
|
18 |
-
import streamlit as st # Add Streamlit import
|
19 |
from nltk.tokenize import word_tokenize
|
20 |
from nltk.stem.lancaster import LancasterStemmer
|
|
|
21 |
|
22 |
# Ensure necessary NLTK resources are downloaded
|
23 |
nltk.download('punkt')
|
@@ -96,7 +91,6 @@ tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-
|
|
96 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
97 |
|
98 |
# Emotion detection setup
|
99 |
-
@st.cache_resource
|
100 |
def load_emotion_model():
|
101 |
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
102 |
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
@@ -109,18 +103,6 @@ url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
|
|
109 |
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"
|
110 |
api_key = os.getenv("GOOGLE_API_KEY") # Use environment variable for security
|
111 |
|
112 |
-
# Install Chrome and Chromedriver for web scraping
|
113 |
-
def install_chrome_and_driver():
|
114 |
-
os.system("apt-get update")
|
115 |
-
os.system("apt-get install -y wget curl")
|
116 |
-
os.system("wget -q https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb")
|
117 |
-
os.system("dpkg -i google-chrome-stable_current_amd64.deb")
|
118 |
-
os.system("apt-get install -y -f")
|
119 |
-
os.system("google-chrome-stable --version")
|
120 |
-
chromedriver_autoinstaller.install()
|
121 |
-
|
122 |
-
install_chrome_and_driver()
|
123 |
-
|
124 |
# Function to get places data using Google Places API
|
125 |
def get_places_data(query, location, radius, api_key, next_page_token=None):
|
126 |
params = {
|
@@ -139,10 +121,38 @@ def get_places_data(query, location, radius, api_key, next_page_token=None):
|
|
139 |
else:
|
140 |
return None
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
# Main function to fetch wellness professional data and display on map
|
143 |
def get_wellness_professionals(location):
|
144 |
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"
|
145 |
radius = 50000 # 50 km radius
|
|
|
|
|
146 |
data = get_places_data(query, location, radius, api_key)
|
147 |
|
148 |
if data:
|
@@ -155,7 +165,9 @@ def get_wellness_professionals(location):
|
|
155 |
longitude = place.get("geometry", {}).get("location", {}).get("lng")
|
156 |
wellness_data.append([name, address, latitude, longitude])
|
157 |
return wellness_data
|
158 |
-
|
|
|
|
|
159 |
|
160 |
# Gradio interface setup for user interaction
|
161 |
def user_interface(message, location, history):
|
|
|
6 |
import tflearn
|
7 |
import gradio as gr
|
8 |
import requests
|
|
|
|
|
|
|
|
|
|
|
9 |
import torch
|
10 |
import pandas as pd
|
11 |
+
from bs4 import BeautifulSoup
|
12 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
|
|
13 |
from nltk.tokenize import word_tokenize
|
14 |
from nltk.stem.lancaster import LancasterStemmer
|
15 |
+
import os
|
16 |
|
17 |
# Ensure necessary NLTK resources are downloaded
|
18 |
nltk.download('punkt')
|
|
|
91 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
92 |
|
93 |
# Emotion detection setup
|
|
|
94 |
def load_emotion_model():
|
95 |
tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
96 |
model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
|
|
103 |
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"
|
104 |
api_key = os.getenv("GOOGLE_API_KEY") # Use environment variable for security
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
# Function to get places data using Google Places API
|
107 |
def get_places_data(query, location, radius, api_key, next_page_token=None):
|
108 |
params = {
|
|
|
121 |
else:
|
122 |
return None
|
123 |
|
124 |
+
# Web scraping function to get wellness professional data (alternative to API)
|
125 |
+
def scrape_wellness_professionals(query, location):
|
126 |
+
# User-Agent header to simulate a browser request
|
127 |
+
headers = {
|
128 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
|
129 |
+
}
|
130 |
+
|
131 |
+
search_url = f"https://www.google.com/search?q={query}+near+{location}"
|
132 |
+
|
133 |
+
# Make a request to the search URL with headers
|
134 |
+
response = requests.get(search_url, headers=headers)
|
135 |
+
if response.status_code == 200:
|
136 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
137 |
+
|
138 |
+
# Parse and extract wellness professionals from the HTML
|
139 |
+
wellness_data = []
|
140 |
+
results = soup.find_all("div", class_="BVG0Nb") # Adjust class based on the actual HTML structure
|
141 |
+
for result in results:
|
142 |
+
name = result.get_text()
|
143 |
+
link = result.find("a")["href"] if result.find("a") else None
|
144 |
+
wellness_data.append([name, link])
|
145 |
+
|
146 |
+
return wellness_data
|
147 |
+
else:
|
148 |
+
return []
|
149 |
+
|
150 |
# Main function to fetch wellness professional data and display on map
|
151 |
def get_wellness_professionals(location):
|
152 |
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"
|
153 |
radius = 50000 # 50 km radius
|
154 |
+
|
155 |
+
# Using Google Places API if available
|
156 |
data = get_places_data(query, location, radius, api_key)
|
157 |
|
158 |
if data:
|
|
|
165 |
longitude = place.get("geometry", {}).get("location", {}).get("lng")
|
166 |
wellness_data.append([name, address, latitude, longitude])
|
167 |
return wellness_data
|
168 |
+
|
169 |
+
# Fallback to scraping if API is not available or fails
|
170 |
+
return scrape_wellness_professionals(query, location)
|
171 |
|
172 |
# Gradio interface setup for user interaction
|
173 |
def user_interface(message, location, history):
|