Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,18 +39,18 @@ net = tflearn.regression(net)
|
|
39 |
chatbot_model = tflearn.DNN(net)
|
40 |
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
41 |
|
42 |
-
#
|
43 |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
44 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
45 |
|
46 |
-
#
|
47 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
48 |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
49 |
|
50 |
-
# Google Maps API
|
51 |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
|
52 |
|
53 |
-
# Chatbot
|
54 |
def bag_of_words(s, words):
|
55 |
bag = [0] * len(words)
|
56 |
s_words = word_tokenize(s)
|
@@ -77,7 +77,7 @@ def chatbot(message, history):
|
|
77 |
history.append((message, response))
|
78 |
return history, response
|
79 |
|
80 |
-
# Sentiment
|
81 |
def analyze_sentiment(user_input):
|
82 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
83 |
with torch.no_grad():
|
@@ -86,7 +86,7 @@ def analyze_sentiment(user_input):
|
|
86 |
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
|
87 |
return sentiment_map[sentiment_class]
|
88 |
|
89 |
-
# Emotion
|
90 |
def detect_emotion(user_input):
|
91 |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
92 |
result = pipe(user_input)
|
@@ -139,14 +139,13 @@ def app_function(message, location, query, history):
|
|
139 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
140 |
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
|
141 |
|
142 |
-
# Enhanced CSS for
|
143 |
custom_css = """
|
144 |
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
|
145 |
body {
|
146 |
background: linear-gradient(135deg, #000000, #ff5722);
|
147 |
color: white;
|
148 |
font-family: 'Roboto', sans-serif;
|
149 |
-
text-align: center;
|
150 |
}
|
151 |
button {
|
152 |
background-color: #ff5722 !important;
|
@@ -156,7 +155,6 @@ button {
|
|
156 |
font-size: 16px;
|
157 |
border-radius: 8px;
|
158 |
cursor: pointer;
|
159 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3);
|
160 |
}
|
161 |
button:hover {
|
162 |
background-color: #e64a19 !important;
|
@@ -169,29 +167,25 @@ textarea, input[type="text"], .gr-chatbot {
|
|
169 |
border-radius: 8px !important;
|
170 |
font-size: 14px;
|
171 |
}
|
172 |
-
.gr-textbox {
|
173 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.5);
|
174 |
-
}
|
175 |
-
.output-container, .gr-html, .gr-textbox, .gr-dataframe {
|
176 |
background: #000000 !important;
|
177 |
color: white !important;
|
178 |
border: 2px solid #ff5722 !important;
|
179 |
border-radius: 8px !important;
|
180 |
-
padding: 10px;
|
181 |
-
}
|
182 |
-
.gr-dataframe {
|
183 |
font-size: 14px;
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
|
|
189 |
}
|
190 |
h1 {
|
191 |
-
font-size:
|
192 |
font-weight: bold;
|
193 |
margin-bottom: 10px;
|
194 |
color: white;
|
|
|
195 |
text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.6);
|
196 |
}
|
197 |
h2 {
|
@@ -200,6 +194,12 @@ h2 {
|
|
200 |
color: white;
|
201 |
text-shadow: 2px 2px 5px rgba(0, 0, 0, 0.4);
|
202 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
"""
|
204 |
|
205 |
# Gradio Interface
|
@@ -208,17 +208,26 @@ with gr.Blocks(css=custom_css) as app:
|
|
208 |
gr.HTML("<h2>Empowering Your Well-Being Journey π</h2>")
|
209 |
|
210 |
with gr.Row():
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
|
|
|
|
215 |
|
216 |
chatbot_box = gr.Chatbot(label="Chat History")
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
submit_btn.click(
|
224 |
app_function,
|
|
|
39 |
chatbot_model = tflearn.DNN(net)
|
40 |
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
41 |
|
42 |
+
# Model for sentiment detection
|
43 |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
44 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
45 |
|
46 |
+
# Model for emotion detection
|
47 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
48 |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
49 |
|
50 |
+
# Google Maps API client
|
51 |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
|
52 |
|
53 |
+
# Chatbot logic
|
54 |
def bag_of_words(s, words):
|
55 |
bag = [0] * len(words)
|
56 |
s_words = word_tokenize(s)
|
|
|
77 |
history.append((message, response))
|
78 |
return history, response
|
79 |
|
80 |
+
# Sentiment analysis
|
81 |
def analyze_sentiment(user_input):
|
82 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
83 |
with torch.no_grad():
|
|
|
86 |
sentiment_map = ["Negative π", "Neutral π", "Positive π"]
|
87 |
return sentiment_map[sentiment_class]
|
88 |
|
89 |
+
# Emotion detection
|
90 |
def detect_emotion(user_input):
|
91 |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
92 |
result = pipe(user_input)
|
|
|
139 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
140 |
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
|
141 |
|
142 |
+
# Enhanced CSS for Custom Title and Styling
|
143 |
custom_css = """
|
144 |
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
|
145 |
body {
|
146 |
background: linear-gradient(135deg, #000000, #ff5722);
|
147 |
color: white;
|
148 |
font-family: 'Roboto', sans-serif;
|
|
|
149 |
}
|
150 |
button {
|
151 |
background-color: #ff5722 !important;
|
|
|
155 |
font-size: 16px;
|
156 |
border-radius: 8px;
|
157 |
cursor: pointer;
|
|
|
158 |
}
|
159 |
button:hover {
|
160 |
background-color: #e64a19 !important;
|
|
|
167 |
border-radius: 8px !important;
|
168 |
font-size: 14px;
|
169 |
}
|
170 |
+
.gr-dataframe, .gr-textbox {
|
|
|
|
|
|
|
171 |
background: #000000 !important;
|
172 |
color: white !important;
|
173 |
border: 2px solid #ff5722 !important;
|
174 |
border-radius: 8px !important;
|
|
|
|
|
|
|
175 |
font-size: 14px;
|
176 |
+
}
|
177 |
+
.suggestions-title {
|
178 |
+
font-size: 1.5rem !important;
|
179 |
+
font-weight: bold;
|
180 |
+
color: white;
|
181 |
+
margin-top: 20px;
|
182 |
}
|
183 |
h1 {
|
184 |
+
font-size: 4rem;
|
185 |
font-weight: bold;
|
186 |
margin-bottom: 10px;
|
187 |
color: white;
|
188 |
+
text-align: center;
|
189 |
text-shadow: 2px 2px 8px rgba(0, 0, 0, 0.6);
|
190 |
}
|
191 |
h2 {
|
|
|
194 |
color: white;
|
195 |
text-shadow: 2px 2px 5px rgba(0, 0, 0, 0.4);
|
196 |
}
|
197 |
+
.input-title, .output-title {
|
198 |
+
font-size: 1.5rem;
|
199 |
+
font-weight: bold;
|
200 |
+
color: black;
|
201 |
+
margin-bottom: 10px;
|
202 |
+
}
|
203 |
"""
|
204 |
|
205 |
# Gradio Interface
|
|
|
208 |
gr.HTML("<h2>Empowering Your Well-Being Journey π</h2>")
|
209 |
|
210 |
with gr.Row():
|
211 |
+
gr.Markdown("<div class='input-title'>Your Message</div>")
|
212 |
+
user_message = gr.Textbox(label=None, placeholder="Enter your message...")
|
213 |
+
gr.Markdown("<div class='input-title'>Your Location</div>")
|
214 |
+
user_location = gr.Textbox(label=None, placeholder="Enter your location...")
|
215 |
+
gr.Markdown("<div class='input-title'>Your Query</div>")
|
216 |
+
search_query = gr.Textbox(label=None, placeholder="Search for professionals...")
|
217 |
|
218 |
chatbot_box = gr.Chatbot(label="Chat History")
|
219 |
+
gr.Markdown("<div class='output-title'>Detected Emotion</div>")
|
220 |
+
emotion_output = gr.Textbox(label=None)
|
221 |
+
gr.Markdown("<div class='output-title'>Detected Sentiment</div>")
|
222 |
+
sentiment_output = gr.Textbox(label=None)
|
223 |
+
gr.Markdown("<div class='suggestions-title'>Suggestions</div>")
|
224 |
+
suggestions_output = gr.DataFrame(headers=["Title", "Links"], label=None)
|
225 |
+
|
226 |
+
gr.Markdown("<h2 class='suggestions-title'>Health Professionals Nearby</h2>")
|
227 |
+
map_output = gr.HTML(label=None)
|
228 |
+
professional_display = gr.Textbox(label=None, lines=5)
|
229 |
+
|
230 |
+
submit_btn = gr.Button("Submit")
|
231 |
|
232 |
submit_btn.click(
|
233 |
app_function,
|