Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import nltk
|
2 |
import numpy as np
|
3 |
import tflearn
|
@@ -5,14 +6,14 @@ import tensorflow
|
|
5 |
import random
|
6 |
import json
|
7 |
import pickle
|
8 |
-
import gradio as gr
|
9 |
from nltk.tokenize import word_tokenize
|
10 |
from nltk.stem.lancaster import LancasterStemmer
|
11 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
12 |
import googlemaps
|
13 |
import folium
|
14 |
import os
|
15 |
-
import
|
|
|
16 |
|
17 |
# Ensure necessary NLTK resources are downloaded
|
18 |
nltk.download('punkt')
|
@@ -20,15 +21,15 @@ nltk.download('punkt')
|
|
20 |
# Initialize the stemmer
|
21 |
stemmer = LancasterStemmer()
|
22 |
|
23 |
-
# Load intents.json for
|
24 |
with open("intents.json") as file:
|
25 |
data = json.load(file)
|
26 |
|
27 |
-
# Load preprocessed data for
|
28 |
with open("data.pickle", "rb") as f:
|
29 |
words, labels, training, output = pickle.load(f)
|
30 |
|
31 |
-
# Build the model structure for
|
32 |
net = tflearn.input_data(shape=[None, len(training[0])])
|
33 |
net = tflearn.fully_connected(net, 8)
|
34 |
net = tflearn.fully_connected(net, 8)
|
@@ -50,7 +51,7 @@ def bag_of_words(s, words):
|
|
50 |
bag[i] = 1
|
51 |
return np.array(bag)
|
52 |
|
53 |
-
# Chat function for
|
54 |
def chatbot(message, history):
|
55 |
history = history or []
|
56 |
message = message.lower()
|
@@ -74,7 +75,6 @@ def chatbot(message, history):
|
|
74 |
history.append((message, response))
|
75 |
return history, history
|
76 |
|
77 |
-
|
78 |
# Sentiment Analysis using Hugging Face model
|
79 |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
80 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
@@ -142,8 +142,46 @@ def get_health_professionals_and_map(current_location, health_professional_query
|
|
142 |
|
143 |
return route_info, m._repr_html_()
|
144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
# Gradio interface
|
146 |
-
def gradio_app(message, location, health_query, history, state):
|
147 |
# Chatbot interaction
|
148 |
history, _ = chatbot(message, history)
|
149 |
|
@@ -156,29 +194,38 @@ def gradio_app(message, location, health_query, history, state):
|
|
156 |
# Health professional search and map display
|
157 |
route_info, map_html = get_health_professionals_and_map(location, health_query)
|
158 |
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
# Gradio UI components
|
162 |
message_input = gr.Textbox(lines=1, label="Message")
|
163 |
location_input = gr.Textbox(value="Honolulu, HI", label="Current Location")
|
164 |
health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, psychiatrist, psychologist)")
|
|
|
165 |
|
166 |
-
chat_history = gr.Chatbot(label="Chat History")
|
167 |
|
168 |
# Outputs
|
169 |
sentiment_output = gr.Textbox(label="Sentiment Analysis Result")
|
170 |
emotion_output = gr.Textbox(label="Emotion Detection Result")
|
171 |
route_info_output = gr.Textbox(label="Health Professionals Information")
|
172 |
map_output = gr.HTML(label="Map with Health Professionals")
|
|
|
173 |
|
174 |
# Create Gradio interface
|
175 |
iface = gr.Interface(
|
176 |
fn=gradio_app,
|
177 |
-
inputs=[message_input, location_input, health_query_input, gr.State()], # Updated
|
178 |
-
outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output, gr.State()], #
|
179 |
allow_flagging="never",
|
180 |
live=True,
|
181 |
-
title="
|
182 |
)
|
183 |
|
184 |
-
|
|
|
|
1 |
+
import gradio as gr
|
2 |
import nltk
|
3 |
import numpy as np
|
4 |
import tflearn
|
|
|
6 |
import random
|
7 |
import json
|
8 |
import pickle
|
|
|
9 |
from nltk.tokenize import word_tokenize
|
10 |
from nltk.stem.lancaster import LancasterStemmer
|
11 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
12 |
import googlemaps
|
13 |
import folium
|
14 |
import os
|
15 |
+
import pandas as pd
|
16 |
+
import torch
|
17 |
|
18 |
# Ensure necessary NLTK resources are downloaded
|
19 |
nltk.download('punkt')
|
|
|
21 |
# Initialize the stemmer
|
22 |
stemmer = LancasterStemmer()
|
23 |
|
24 |
+
# Load intents.json for Well-Being Chatbot
|
25 |
with open("intents.json") as file:
|
26 |
data = json.load(file)
|
27 |
|
28 |
+
# Load preprocessed data for Well-Being Chatbot
|
29 |
with open("data.pickle", "rb") as f:
|
30 |
words, labels, training, output = pickle.load(f)
|
31 |
|
32 |
+
# Build the model structure for Well-Being Chatbot
|
33 |
net = tflearn.input_data(shape=[None, len(training[0])])
|
34 |
net = tflearn.fully_connected(net, 8)
|
35 |
net = tflearn.fully_connected(net, 8)
|
|
|
51 |
bag[i] = 1
|
52 |
return np.array(bag)
|
53 |
|
54 |
+
# Chat function for Well-Being Chatbot
|
55 |
def chatbot(message, history):
|
56 |
history = history or []
|
57 |
message = message.lower()
|
|
|
75 |
history.append((message, response))
|
76 |
return history, history
|
77 |
|
|
|
78 |
# Sentiment Analysis using Hugging Face model
|
79 |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
80 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
|
|
142 |
|
143 |
return route_info, m._repr_html_()
|
144 |
|
145 |
+
# Function to generate suggestions based on the detected emotion
|
146 |
+
def generate_suggestions(emotion):
|
147 |
+
if emotion == 'joy':
|
148 |
+
return [
|
149 |
+
{"Title": "Relaxation Techniques", "Subject": "Relaxation", "Link": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"},
|
150 |
+
{"Title": "Dealing with Stress", "Subject": "Stress Management", "Link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"},
|
151 |
+
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"},
|
152 |
+
{"Title": "Relaxation Video", "Subject": "Video", "Link": "https://youtu.be/m1vaUGtyo-A"}
|
153 |
+
]
|
154 |
+
elif emotion == 'anger':
|
155 |
+
return [
|
156 |
+
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"},
|
157 |
+
{"Title": "Stress Management Tips", "Subject": "Stress Management", "Link": "https://www.health.harvard.edu/health-a-to-z"},
|
158 |
+
{"Title": "Dealing with Anger", "Subject": "Anger Management", "Link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"},
|
159 |
+
{"Title": "Relaxation Video", "Subject": "Video", "Link": "https://youtu.be/MIc299Flibs"}
|
160 |
+
]
|
161 |
+
elif emotion == 'fear':
|
162 |
+
return [
|
163 |
+
{"Title": "Mindfulness Practices", "Subject": "Mindfulness", "Link": "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"},
|
164 |
+
{"Title": "Coping with Anxiety", "Subject": "Anxiety Management", "Link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"},
|
165 |
+
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"},
|
166 |
+
{"Title": "Relaxation Video", "Subject": "Video", "Link": "https://youtu.be/yGKKz185M5o"}
|
167 |
+
]
|
168 |
+
elif emotion == 'sadness':
|
169 |
+
return [
|
170 |
+
{"Title": "Emotional Wellness Toolkit", "Subject": "Wellness", "Link": "https://www.nih.gov/health-information/emotional-wellness-toolkit"},
|
171 |
+
{"Title": "Dealing with Anxiety", "Subject": "Anxiety Management", "Link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"},
|
172 |
+
{"Title": "Relaxation Video", "Subject": "Video", "Link": "https://youtu.be/-e-4Kx5px_I"}
|
173 |
+
]
|
174 |
+
elif emotion == 'surprise':
|
175 |
+
return [
|
176 |
+
{"Title": "Managing Stress", "Subject": "Stress Management", "Link": "https://www.health.harvard.edu/health-a-to-z"},
|
177 |
+
{"Title": "Coping Strategies", "Subject": "Coping", "Link": "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"},
|
178 |
+
{"Title": "Relaxation Video", "Subject": "Video", "Link": "https://youtu.be/m1vaUGtyo-A"}
|
179 |
+
]
|
180 |
+
else:
|
181 |
+
return []
|
182 |
+
|
183 |
# Gradio interface
|
184 |
+
def gradio_app(message, location, health_query, submit_button, history, state):
|
185 |
# Chatbot interaction
|
186 |
history, _ = chatbot(message, history)
|
187 |
|
|
|
194 |
# Health professional search and map display
|
195 |
route_info, map_html = get_health_professionals_and_map(location, health_query)
|
196 |
|
197 |
+
# Generate suggestions based on the detected emotion
|
198 |
+
suggestions = generate_suggestions(emotion_response.split(': ')[1])
|
199 |
+
|
200 |
+
# Create a DataFrame for displaying suggestions
|
201 |
+
suggestions_df = pd.DataFrame(suggestions)
|
202 |
+
|
203 |
+
return history, sentiment_response, emotion_response, route_info, map_html, gr.DataFrame(suggestions_df, headers=["Title", "Subject", "Link"]), state
|
204 |
|
205 |
# Gradio UI components
|
206 |
message_input = gr.Textbox(lines=1, label="Message")
|
207 |
location_input = gr.Textbox(value="Honolulu, HI", label="Current Location")
|
208 |
health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, psychiatrist, psychologist)")
|
209 |
+
submit_button = gr.Button("Submit") # Submit button for triggering the app function
|
210 |
|
211 |
+
chat_history = gr.Chatbot(label="Well-Being Chat History") # Renamed chatbot label
|
212 |
|
213 |
# Outputs
|
214 |
sentiment_output = gr.Textbox(label="Sentiment Analysis Result")
|
215 |
emotion_output = gr.Textbox(label="Emotion Detection Result")
|
216 |
route_info_output = gr.Textbox(label="Health Professionals Information")
|
217 |
map_output = gr.HTML(label="Map with Health Professionals")
|
218 |
+
suggestions_output = gr.DataFrame(label="Well-Being Suggestions", headers=["Title", "Subject", "Link"]) # Renamed suggestions output
|
219 |
|
220 |
# Create Gradio interface
|
221 |
iface = gr.Interface(
|
222 |
fn=gradio_app,
|
223 |
+
inputs=[message_input, location_input, health_query_input, submit_button, gr.State(), gr.State()], # Updated inputs to include submit button
|
224 |
+
outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output, gr.State()], # Outputs remain unchanged
|
225 |
allow_flagging="never",
|
226 |
live=True,
|
227 |
+
title="Well-Being App: Support, Sentiment, Emotion Detection & Health Professional Search"
|
228 |
)
|
229 |
|
230 |
+
# Launch the Gradio interface
|
231 |
+
iface.launch()
|