Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,17 +13,15 @@ import googlemaps
|
|
13 |
import folium
|
14 |
import torch
|
15 |
|
16 |
-
# Disable GPU usage for TensorFlow and
|
17 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
18 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
19 |
-
|
20 |
-
# Ensure necessary NLTK resources are downloaded
|
21 |
nltk.download("punkt")
|
22 |
|
23 |
-
# Initialize
|
24 |
stemmer = LancasterStemmer()
|
25 |
|
26 |
-
# Load
|
27 |
with open("intents.json") as file:
|
28 |
intents_data = json.load(file)
|
29 |
|
@@ -39,19 +37,18 @@ net = tflearn.regression(net)
|
|
39 |
chatbot_model = tflearn.DNN(net)
|
40 |
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
41 |
|
42 |
-
#
|
43 |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
44 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
45 |
|
46 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
47 |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
48 |
|
49 |
-
# Google Maps API
|
50 |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
|
51 |
|
52 |
-
# Helper
|
53 |
def bag_of_words(s, words):
|
54 |
-
"""Convert user input into bag-of-words vector for use in chatbot model."""
|
55 |
bag = [0] * len(words)
|
56 |
s_words = word_tokenize(s)
|
57 |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
|
@@ -62,7 +59,7 @@ def bag_of_words(s, words):
|
|
62 |
return np.array(bag)
|
63 |
|
64 |
def chatbot(message, history):
|
65 |
-
"""Generate chatbot response and
|
66 |
history = history or []
|
67 |
try:
|
68 |
result = chatbot_model.predict([bag_of_words(message, words)])
|
@@ -78,7 +75,7 @@ def chatbot(message, history):
|
|
78 |
return history, response
|
79 |
|
80 |
def analyze_sentiment(user_input):
|
81 |
-
"""
|
82 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
83 |
with torch.no_grad():
|
84 |
outputs = model_sentiment(**inputs)
|
@@ -87,10 +84,10 @@ def analyze_sentiment(user_input):
|
|
87 |
return sentiment_map[sentiment_class]
|
88 |
|
89 |
def detect_emotion(user_input):
|
90 |
-
"""Detect user emotion
|
91 |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
92 |
result = pipe(user_input)
|
93 |
-
emotion = result[0]['label']
|
94 |
emotion_map = {
|
95 |
"joy": "π Joy",
|
96 |
"anger": "π Anger",
|
@@ -99,64 +96,51 @@ def detect_emotion(user_input):
|
|
99 |
"surprise": "π² Surprise",
|
100 |
"neutral": "π Neutral"
|
101 |
}
|
102 |
-
return emotion_map.get(emotion, "Unknown
|
103 |
|
104 |
def generate_suggestions(emotion):
|
105 |
-
"""
|
106 |
suggestions = {
|
107 |
"joy": [
|
108 |
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
|
109 |
-
["
|
110 |
-
["
|
111 |
-
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
|
112 |
],
|
113 |
"anger": [
|
114 |
-
["
|
115 |
-
["
|
116 |
-
["Dealing with Anger", '<a href="https://www.helpguide.org/mental-health/anger-management.htm" target="_blank">Visit</a>'],
|
117 |
-
["Relaxation Video", '<a href="https://youtu.be/MIc299Flibs" target="_blank">Watch</a>']
|
118 |
],
|
119 |
"fear": [
|
120 |
-
["
|
121 |
-
["
|
122 |
-
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov/health-information/emotional-wellness-toolkit" target="_blank">Visit</a>'],
|
123 |
-
["Relaxation Video", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
|
124 |
],
|
125 |
"sadness": [
|
126 |
-
["
|
127 |
-
["Dealing with Anxiety", '<a href="https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety" target="_blank">Visit</a>'],
|
128 |
-
["Relaxation Video", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
|
129 |
],
|
130 |
"surprise": [
|
131 |
-
["
|
132 |
-
|
133 |
-
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
|
134 |
-
],
|
135 |
}
|
136 |
return suggestions.get(emotion.lower(), [["No suggestions available", ""]])
|
137 |
|
138 |
def get_health_professionals_and_map(location, query):
|
139 |
-
"""
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
professionals
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
except Exception as e:
|
157 |
-
return [f"Error: {str(e)}"], ""
|
158 |
-
|
159 |
-
# Application Logic
|
160 |
def app_function(user_input, location, query, history):
|
161 |
chatbot_history, _ = chatbot(user_input, history)
|
162 |
sentiment = analyze_sentiment(user_input)
|
@@ -165,64 +149,29 @@ def app_function(user_input, location, query, history):
|
|
165 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
166 |
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
|
167 |
|
168 |
-
#
|
169 |
custom_css = """
|
170 |
-
|
171 |
-
|
172 |
-
color: white;
|
173 |
-
font-family: 'Roboto', sans-serif;
|
174 |
-
}
|
175 |
-
button {
|
176 |
-
background: linear-gradient(45deg, #ff5722, #ff9800) !important;
|
177 |
-
color: white !important;
|
178 |
-
border: none;
|
179 |
-
border-radius: 8px;
|
180 |
-
padding: 12px 20px;
|
181 |
-
cursor: pointer;
|
182 |
-
font-size: 16px;
|
183 |
-
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.3);
|
184 |
-
}
|
185 |
-
button:hover {
|
186 |
-
background: linear-gradient(45deg, #ff9800, #ff5722) !important;
|
187 |
-
}
|
188 |
-
textarea, input {
|
189 |
-
background: #000000 !important;
|
190 |
-
color: white !important;
|
191 |
-
border: 1px solid #ff5722 !important;
|
192 |
-
padding: 12px;
|
193 |
-
font-size: 14px;
|
194 |
-
border-radius: 8px;
|
195 |
-
}
|
196 |
-
.gr-chatbot, .gr-textbox, .gr-html, .gr-dataframe {
|
197 |
-
background-color: #000 !important;
|
198 |
-
border: 1px solid #ff5722 !important;
|
199 |
-
color: white !important;
|
200 |
-
}
|
201 |
"""
|
202 |
|
203 |
# Gradio Application
|
204 |
with gr.Blocks(css=custom_css) as app:
|
205 |
-
gr.Markdown("
|
206 |
-
gr.
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
submit_btn.click(
|
223 |
-
app_function,
|
224 |
-
inputs=[user_message, location, query, chatbot_output],
|
225 |
-
outputs=[chatbot_output, sentiment_output, emotion_output, suggestion_table, professionals_output, map_html]
|
226 |
)
|
227 |
-
|
228 |
app.launch()
|
|
|
13 |
import folium
|
14 |
import torch
|
15 |
|
16 |
+
# Disable GPU usage for TensorFlow and logs
|
17 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
18 |
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
|
19 |
nltk.download("punkt")
|
20 |
|
21 |
+
# Initialize Stemmer
|
22 |
stemmer = LancasterStemmer()
|
23 |
|
24 |
+
# Load Chatbot Training Data
|
25 |
with open("intents.json") as file:
|
26 |
intents_data = json.load(file)
|
27 |
|
|
|
37 |
chatbot_model = tflearn.DNN(net)
|
38 |
chatbot_model.load("MentalHealthChatBotmodel.tflearn")
|
39 |
|
40 |
+
# Sentiment and Emotion Detection Models
|
41 |
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
42 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
43 |
|
44 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
45 |
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
46 |
|
47 |
+
# Google Maps API for Nearby Professionals
|
48 |
gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY'))
|
49 |
|
50 |
+
# Chatbot Helper
|
51 |
def bag_of_words(s, words):
|
|
|
52 |
bag = [0] * len(words)
|
53 |
s_words = word_tokenize(s)
|
54 |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
|
|
|
59 |
return np.array(bag)
|
60 |
|
61 |
def chatbot(message, history):
|
62 |
+
"""Generate a chatbot response and update history."""
|
63 |
history = history or []
|
64 |
try:
|
65 |
result = chatbot_model.predict([bag_of_words(message, words)])
|
|
|
75 |
return history, response
|
76 |
|
77 |
def analyze_sentiment(user_input):
|
78 |
+
"""Detect sentiment and return sentiment emoji."""
|
79 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
80 |
with torch.no_grad():
|
81 |
outputs = model_sentiment(**inputs)
|
|
|
84 |
return sentiment_map[sentiment_class]
|
85 |
|
86 |
def detect_emotion(user_input):
|
87 |
+
"""Detect user emotion based on input."""
|
88 |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
89 |
result = pipe(user_input)
|
90 |
+
emotion = result[0]['label'].lower()
|
91 |
emotion_map = {
|
92 |
"joy": "π Joy",
|
93 |
"anger": "π Anger",
|
|
|
96 |
"surprise": "π² Surprise",
|
97 |
"neutral": "π Neutral"
|
98 |
}
|
99 |
+
return emotion_map.get(emotion, "Unknown π€")
|
100 |
|
101 |
def generate_suggestions(emotion):
|
102 |
+
"""Provide clickable suggestions for each emotion."""
|
103 |
suggestions = {
|
104 |
"joy": [
|
105 |
["Relaxation Techniques", '<a href="https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation" target="_blank">Visit</a>'],
|
106 |
+
["Emotional Wellness Toolkit", '<a href="https://www.nih.gov" target="_blank">Visit</a>'],
|
107 |
+
["Relaxation Video", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>'],
|
|
|
108 |
],
|
109 |
"anger": [
|
110 |
+
["Stress Management", '<a href="https://www.health.harvard.edu" target="_blank">Visit</a>'],
|
111 |
+
["Dealing with Anger", '<a href="https://www.helpguide.org" target="_blank">Visit</a>']
|
|
|
|
|
112 |
],
|
113 |
"fear": [
|
114 |
+
["Coping with Anxiety", '<a href="https://www.helpguide.org" target="_blank">Visit</a>'],
|
115 |
+
["Mindfulness Video", '<a href="https://youtu.be/yGKKz185M5o" target="_blank">Watch</a>']
|
|
|
|
|
116 |
],
|
117 |
"sadness": [
|
118 |
+
["Overcoming Sadness", '<a href="https://youtu.be/-e-4Kx5px_I" target="_blank">Watch</a>']
|
|
|
|
|
119 |
],
|
120 |
"surprise": [
|
121 |
+
["Stress Tips", '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch</a>']
|
122 |
+
]
|
|
|
|
|
123 |
}
|
124 |
return suggestions.get(emotion.lower(), [["No suggestions available", ""]])
|
125 |
|
126 |
def get_health_professionals_and_map(location, query):
|
127 |
+
"""Show nearby professionals and interactive map."""
|
128 |
+
geo_location = gmaps.geocode(location)
|
129 |
+
if geo_location:
|
130 |
+
lat, lng = geo_location[0]["geometry"]["location"].values()
|
131 |
+
map_ = folium.Map(location=(lat, lng), zoom_start=13)
|
132 |
+
professionals = []
|
133 |
+
places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
|
134 |
+
for place in places_result:
|
135 |
+
professionals.append(f"{place['name']} - {place.get('vicinity', '')}")
|
136 |
+
folium.Marker(
|
137 |
+
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
|
138 |
+
popup=place["name"]
|
139 |
+
).add_to(map_)
|
140 |
+
return professionals, map_._repr_html_()
|
141 |
+
return ["No professionals found nearby."], ""
|
142 |
+
|
143 |
+
# Main Function
|
|
|
|
|
|
|
|
|
144 |
def app_function(user_input, location, query, history):
|
145 |
chatbot_history, _ = chatbot(user_input, history)
|
146 |
sentiment = analyze_sentiment(user_input)
|
|
|
149 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
150 |
return chatbot_history, sentiment, emotion, suggestions, professionals, map_html
|
151 |
|
152 |
+
# CSS for Orange Themed Submit Button
|
153 |
custom_css = """
|
154 |
+
button { background: linear-gradient(45deg, #ff5722, #ff9800); color: white; }
|
155 |
+
.gr-dataframe, .gr-html, .gr-chatbot { background: black; color: white; border: 1px solid #ff5722; }
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
"""
|
157 |
|
158 |
# Gradio Application
|
159 |
with gr.Blocks(css=custom_css) as app:
|
160 |
+
gr.Markdown("### π Well-Being Companion")
|
161 |
+
user_input = gr.Textbox(label="Enter Your Message")
|
162 |
+
location_input = gr.Textbox(label="Your Location")
|
163 |
+
query_input = gr.Textbox(label="Search Query (e.g., therapist)")
|
164 |
+
chatbot_history = gr.Chatbot(label="Chatbot History")
|
165 |
+
sentiment_box = gr.Textbox(label="Sentiment Detected")
|
166 |
+
emotion_box = gr.Textbox(label="Emotion Detected")
|
167 |
+
suggestions_table = gr.DataFrame(headers=["Title", "Link"], label="Suggestion Based On Emotion")
|
168 |
+
map_output_box = gr.HTML(label="Interactive Map of Professionals")
|
169 |
+
professional_list_box = gr.Textbox(label="Professionals Nearby", lines=5)
|
170 |
+
submit_button = gr.Button("Submit")
|
171 |
+
|
172 |
+
submit_button.click(
|
173 |
+
app_function,
|
174 |
+
inputs=[user_input, location_input, query_input, chatbot_history],
|
175 |
+
outputs=[chatbot_history, sentiment_box, emotion_box, suggestions_table, professional_list_box, map_output_box]
|
|
|
|
|
|
|
|
|
|
|
176 |
)
|
|
|
177 |
app.launch()
|