Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,20 +12,20 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipe
|
|
12 |
import pandas as pd
|
13 |
import torch
|
14 |
|
15 |
-
# Disable TensorFlow GPU warnings
|
16 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
17 |
|
18 |
# Download necessary NLTK resources
|
19 |
nltk.download("punkt")
|
20 |
|
21 |
-
# Initialize Lancaster Stemmer
|
22 |
stemmer = LancasterStemmer()
|
23 |
|
24 |
-
# Load intents.json for
|
25 |
with open("intents.json") as file:
|
26 |
intents_data = json.load(file)
|
27 |
|
28 |
-
# Load tokenized training data
|
29 |
with open("data.pickle", "rb") as f:
|
30 |
words, labels, training, output = pickle.load(f)
|
31 |
|
@@ -42,7 +42,7 @@ def build_chatbot_model():
|
|
42 |
|
43 |
chatbot_model = build_chatbot_model()
|
44 |
|
45 |
-
#
|
46 |
def bag_of_words(s, words):
|
47 |
bag = [0 for _ in range(len(words))]
|
48 |
s_words = word_tokenize(s)
|
@@ -55,13 +55,12 @@ def bag_of_words(s, words):
|
|
55 |
|
56 |
# Chatbot Response Function
|
57 |
def chatbot_response(message, history):
|
58 |
-
"""Generates a chatbot response."""
|
59 |
history = history or []
|
60 |
try:
|
61 |
result = chatbot_model.predict([bag_of_words(message, words)])
|
62 |
idx = np.argmax(result)
|
63 |
tag = labels[idx]
|
64 |
-
response = "I
|
65 |
for intent in intents_data["intents"]:
|
66 |
if intent["tag"] == tag:
|
67 |
response = random.choice(intent["responses"])
|
@@ -73,7 +72,7 @@ def chatbot_response(message, history):
|
|
73 |
history.append({"role": "assistant", "content": response})
|
74 |
return history, response
|
75 |
|
76 |
-
# Emotion Detection
|
77 |
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
78 |
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
79 |
|
@@ -94,12 +93,11 @@ def detect_emotion(user_input):
|
|
94 |
except Exception as e:
|
95 |
return f"Error detecting emotion: {str(e)} π₯"
|
96 |
|
97 |
-
# Sentiment Analysis
|
98 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
99 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
100 |
|
101 |
def analyze_sentiment(user_input):
|
102 |
-
"""Analyze sentiment based on input."""
|
103 |
inputs = sentiment_tokenizer(user_input, return_tensors="pt")
|
104 |
try:
|
105 |
with torch.no_grad():
|
@@ -128,64 +126,46 @@ def generate_suggestions(emotion):
|
|
128 |
}
|
129 |
return suggestions_map.get(emotion, [{"Title": "General Wellness Resources π", "Link": "https://www.helpguide.org/wellness"}])
|
130 |
|
131 |
-
#
|
132 |
def search_nearby_professionals(location, query):
|
133 |
-
"""
|
134 |
if location and query:
|
135 |
-
|
136 |
{"Name": "Wellness Center", "Address": "123 Wellness Way"},
|
137 |
{"Name": "Mental Health Clinic", "Address": "456 Recovery Road"},
|
138 |
{"Name": "Therapy Hub", "Address": "789 Peace Avenue"},
|
139 |
]
|
|
|
140 |
return []
|
141 |
|
142 |
# Main App Logic
|
143 |
def well_being_app(user_input, location, query, history):
|
144 |
-
"""Handles chatbot interaction, emotion detection, sentiment analysis, and professional search results."""
|
145 |
-
# Chatbot Response
|
146 |
history, _ = chatbot_response(user_input, history)
|
147 |
-
|
148 |
-
# Emotion Detection
|
149 |
emotion = detect_emotion(user_input)
|
150 |
-
|
151 |
-
# Sentiment Analysis
|
152 |
sentiment = analyze_sentiment(user_input)
|
153 |
-
|
154 |
-
# Emotion-based Suggestions
|
155 |
emotion_name = emotion.split(": ")[-1]
|
156 |
suggestions = generate_suggestions(emotion_name)
|
157 |
suggestions_df = pd.DataFrame(suggestions)
|
158 |
-
|
159 |
-
# Nearby Professionals Lookup
|
160 |
professionals = search_nearby_professionals(location, query)
|
161 |
-
|
162 |
return history, sentiment, emotion, suggestions_df, professionals
|
163 |
|
164 |
# Gradio Interface
|
165 |
with gr.Blocks() as interface:
|
166 |
gr.Markdown("## π± Well-being Companion")
|
167 |
-
gr.Markdown("> Empowering Your Health! π")
|
168 |
|
169 |
with gr.Row():
|
170 |
-
user_input = gr.Textbox(label="Your Message"
|
171 |
-
location_input = gr.Textbox(label="Location"
|
172 |
-
query_input = gr.Textbox(label="Search Query"
|
173 |
-
submit_button = gr.Button("Submit"
|
174 |
|
175 |
-
# Chatbot Section
|
176 |
chatbot_output = gr.Chatbot(label="Chatbot Interaction", type="messages", value=[])
|
177 |
-
|
178 |
-
# Sentiment and Emotion Outputs
|
179 |
sentiment_output = gr.Textbox(label="Sentiment Analysis")
|
180 |
emotion_output = gr.Textbox(label="Emotion Detected")
|
181 |
-
|
182 |
-
# Suggestions Table
|
183 |
suggestions_output = gr.DataFrame(label="Suggestions", value=[], headers=["Title", "Link"])
|
|
|
184 |
|
185 |
-
# Professionals Table
|
186 |
-
nearby_professionals_output = gr.DataFrame(label="Nearby Professionals", value=[], headers=["Name", "Address"])
|
187 |
-
|
188 |
-
# Connect Inputs to Outputs
|
189 |
submit_button.click(
|
190 |
well_being_app,
|
191 |
inputs=[user_input, location_input, query_input, chatbot_output],
|
@@ -198,5 +178,4 @@ with gr.Blocks() as interface:
|
|
198 |
],
|
199 |
)
|
200 |
|
201 |
-
# Run Gradio Application
|
202 |
interface.launch()
|
|
|
12 |
import pandas as pd
|
13 |
import torch
|
14 |
|
15 |
+
# Disable TensorFlow GPU warnings
|
16 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
17 |
|
18 |
# Download necessary NLTK resources
|
19 |
nltk.download("punkt")
|
20 |
|
21 |
+
# Initialize Lancaster Stemmer
|
22 |
stemmer = LancasterStemmer()
|
23 |
|
24 |
+
# Load intents.json for chatbot
|
25 |
with open("intents.json") as file:
|
26 |
intents_data = json.load(file)
|
27 |
|
28 |
+
# Load tokenized training data
|
29 |
with open("data.pickle", "rb") as f:
|
30 |
words, labels, training, output = pickle.load(f)
|
31 |
|
|
|
42 |
|
43 |
chatbot_model = build_chatbot_model()
|
44 |
|
45 |
+
# Bag of Words Function
|
46 |
def bag_of_words(s, words):
|
47 |
bag = [0 for _ in range(len(words))]
|
48 |
s_words = word_tokenize(s)
|
|
|
55 |
|
56 |
# Chatbot Response Function
|
57 |
def chatbot_response(message, history):
|
|
|
58 |
history = history or []
|
59 |
try:
|
60 |
result = chatbot_model.predict([bag_of_words(message, words)])
|
61 |
idx = np.argmax(result)
|
62 |
tag = labels[idx]
|
63 |
+
response = "I'm not sure how to respond to that. π€"
|
64 |
for intent in intents_data["intents"]:
|
65 |
if intent["tag"] == tag:
|
66 |
response = random.choice(intent["responses"])
|
|
|
72 |
history.append({"role": "assistant", "content": response})
|
73 |
return history, response
|
74 |
|
75 |
+
# Emotion Detection
|
76 |
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
77 |
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
78 |
|
|
|
93 |
except Exception as e:
|
94 |
return f"Error detecting emotion: {str(e)} π₯"
|
95 |
|
96 |
+
# Sentiment Analysis
|
97 |
sentiment_tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
98 |
sentiment_model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
99 |
|
100 |
def analyze_sentiment(user_input):
|
|
|
101 |
inputs = sentiment_tokenizer(user_input, return_tensors="pt")
|
102 |
try:
|
103 |
with torch.no_grad():
|
|
|
126 |
}
|
127 |
return suggestions_map.get(emotion, [{"Title": "General Wellness Resources π", "Link": "https://www.helpguide.org/wellness"}])
|
128 |
|
129 |
+
# Nearby Professionals Function
|
130 |
def search_nearby_professionals(location, query):
|
131 |
+
"""Returns a list of professionals as a list of lists for compatibility with DataFrame."""
|
132 |
if location and query:
|
133 |
+
results = [
|
134 |
{"Name": "Wellness Center", "Address": "123 Wellness Way"},
|
135 |
{"Name": "Mental Health Clinic", "Address": "456 Recovery Road"},
|
136 |
{"Name": "Therapy Hub", "Address": "789 Peace Avenue"},
|
137 |
]
|
138 |
+
return [[item["Name"], item["Address"]] for item in results]
|
139 |
return []
|
140 |
|
141 |
# Main App Logic
|
142 |
def well_being_app(user_input, location, query, history):
|
|
|
|
|
143 |
history, _ = chatbot_response(user_input, history)
|
|
|
|
|
144 |
emotion = detect_emotion(user_input)
|
|
|
|
|
145 |
sentiment = analyze_sentiment(user_input)
|
|
|
|
|
146 |
emotion_name = emotion.split(": ")[-1]
|
147 |
suggestions = generate_suggestions(emotion_name)
|
148 |
suggestions_df = pd.DataFrame(suggestions)
|
|
|
|
|
149 |
professionals = search_nearby_professionals(location, query)
|
|
|
150 |
return history, sentiment, emotion, suggestions_df, professionals
|
151 |
|
152 |
# Gradio Interface
|
153 |
with gr.Blocks() as interface:
|
154 |
gr.Markdown("## π± Well-being Companion")
|
155 |
+
gr.Markdown("> Empowering Your Mental Health! π")
|
156 |
|
157 |
with gr.Row():
|
158 |
+
user_input = gr.Textbox(label="Your Message")
|
159 |
+
location_input = gr.Textbox(label="Location")
|
160 |
+
query_input = gr.Textbox(label="Search Query")
|
161 |
+
submit_button = gr.Button("Submit")
|
162 |
|
|
|
163 |
chatbot_output = gr.Chatbot(label="Chatbot Interaction", type="messages", value=[])
|
|
|
|
|
164 |
sentiment_output = gr.Textbox(label="Sentiment Analysis")
|
165 |
emotion_output = gr.Textbox(label="Emotion Detected")
|
|
|
|
|
166 |
suggestions_output = gr.DataFrame(label="Suggestions", value=[], headers=["Title", "Link"])
|
167 |
+
nearby_professionals_output = gr.DataFrame(label="Nearby Professionals", headers=["Name", "Address"])
|
168 |
|
|
|
|
|
|
|
|
|
169 |
submit_button.click(
|
170 |
well_being_app,
|
171 |
inputs=[user_input, location_input, query_input, chatbot_output],
|
|
|
178 |
],
|
179 |
)
|
180 |
|
|
|
181 |
interface.launch()
|