Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,11 @@ from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipe
|
|
12 |
import googlemaps
|
13 |
import folium
|
14 |
import torch
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Suppress TensorFlow warnings
|
17 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
@@ -46,9 +51,67 @@ model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/e
|
|
46 |
# Google Maps API Client
|
47 |
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
|
48 |
|
49 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
def bag_of_words(s, words):
|
51 |
-
"""Convert user input to bag-of-words vector."""
|
52 |
bag = [0] * len(words)
|
53 |
s_words = word_tokenize(s)
|
54 |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
|
@@ -59,7 +122,6 @@ def bag_of_words(s, words):
|
|
59 |
return np.array(bag)
|
60 |
|
61 |
def generate_chatbot_response(message, history):
|
62 |
-
"""Generate chatbot response and maintain conversation history."""
|
63 |
history = history or []
|
64 |
try:
|
65 |
result = chatbot_model.predict([bag_of_words(message, words)])
|
@@ -75,7 +137,6 @@ def generate_chatbot_response(message, history):
|
|
75 |
return history, response
|
76 |
|
77 |
def analyze_sentiment(user_input):
|
78 |
-
"""Analyze sentiment and map to emojis."""
|
79 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
80 |
with torch.no_grad():
|
81 |
outputs = model_sentiment(**inputs)
|
@@ -84,7 +145,6 @@ def analyze_sentiment(user_input):
|
|
84 |
return f"Sentiment: {sentiment_map[sentiment_class]}"
|
85 |
|
86 |
def detect_emotion(user_input):
|
87 |
-
"""Detect emotions based on input."""
|
88 |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
89 |
result = pipe(user_input)
|
90 |
emotion = result[0]["label"].lower().strip()
|
@@ -99,52 +159,20 @@ def detect_emotion(user_input):
|
|
99 |
return emotion_map.get(emotion, "Unknown 🤔"), emotion
|
100 |
|
101 |
def generate_suggestions(emotion):
|
102 |
-
"""Return relevant suggestions based on detected emotions."""
|
103 |
emotion_key = emotion.lower()
|
104 |
suggestions = {
|
105 |
-
|
106 |
-
["Relaxation Techniques", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
|
107 |
-
["Dealing with Stress", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
108 |
-
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
|
109 |
-
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
|
110 |
-
],
|
111 |
-
"anger": [
|
112 |
-
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
|
113 |
-
["Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"],
|
114 |
-
["Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
115 |
-
["Relaxation Video", "https://youtu.be/MIc299Flibs"],
|
116 |
-
],
|
117 |
-
"fear": [
|
118 |
-
["Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"],
|
119 |
-
["Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
120 |
-
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
|
121 |
-
["Relaxation Video", "https://youtu.be/yGKKz185M5o"],
|
122 |
-
],
|
123 |
-
"sadness": [
|
124 |
-
["Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"],
|
125 |
-
["Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
126 |
-
["Relaxation Video", "https://youtu.be/-e-4Kx5px_I"],
|
127 |
-
],
|
128 |
-
"surprise": [
|
129 |
-
["Managing Stress", "https://www.health.harvard.edu/health-a-to-z"],
|
130 |
-
["Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"],
|
131 |
-
["Relaxation Video", "https://youtu.be/m1vaUGtyo-A"],
|
132 |
-
],
|
133 |
}
|
134 |
|
135 |
-
# Format the output to include HTML anchor tags
|
136 |
formatted_suggestions = [
|
137 |
[title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
|
138 |
]
|
139 |
-
|
140 |
return formatted_suggestions
|
141 |
|
142 |
def get_health_professionals_and_map(location, query):
|
143 |
-
"""Search nearby healthcare professionals using Google Maps API."""
|
144 |
try:
|
145 |
if not location or not query:
|
146 |
-
return [], ""
|
147 |
-
|
148 |
geo_location = gmaps.geocode(location)
|
149 |
if geo_location:
|
150 |
lat, lng = geo_location[0]["geometry"]["location"].values()
|
@@ -152,35 +180,42 @@ def get_health_professionals_and_map(location, query):
|
|
152 |
professionals = []
|
153 |
map_ = folium.Map(location=(lat, lng), zoom_start=13)
|
154 |
for place in places_result:
|
155 |
-
# Use a list of values to append each professional
|
156 |
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
|
157 |
folium.Marker(
|
158 |
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
|
159 |
popup=f"{place['name']}"
|
160 |
).add_to(map_)
|
161 |
return professionals, map_._repr_html_()
|
162 |
-
|
163 |
-
return [], "" # Return empty list if no professionals found
|
164 |
except Exception as e:
|
165 |
-
return [], ""
|
166 |
|
167 |
# Main Application Logic
|
168 |
-
def app_function(user_input, location, query, history):
|
169 |
chatbot_history, _ = generate_chatbot_response(user_input, history)
|
170 |
sentiment_result = analyze_sentiment(user_input)
|
171 |
emotion_result, cleaned_emotion = detect_emotion(user_input)
|
172 |
suggestions = generate_suggestions(cleaned_emotion)
|
173 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
# CSS Styling
|
177 |
custom_css = """
|
178 |
body {
|
179 |
font-family: 'Roboto', sans-serif;
|
180 |
-
background-color: #3c6487;
|
181 |
color: white;
|
182 |
}
|
183 |
-
|
184 |
h1 {
|
185 |
background: #ffffff;
|
186 |
color: #000000;
|
@@ -190,7 +225,6 @@ h1 {
|
|
190 |
text-align: center;
|
191 |
font-size: 2.5rem;
|
192 |
}
|
193 |
-
|
194 |
textarea, input {
|
195 |
background: transparent;
|
196 |
color: black;
|
@@ -201,20 +235,12 @@ textarea, input {
|
|
201 |
outline: none;
|
202 |
border-radius: 8px;
|
203 |
}
|
204 |
-
|
205 |
textarea:focus, input:focus {
|
206 |
background: transparent;
|
207 |
color: black;
|
208 |
border: 2px solid orange;
|
209 |
outline: none;
|
210 |
}
|
211 |
-
|
212 |
-
textarea:hover, input:hover {
|
213 |
-
background: transparent;
|
214 |
-
color: black;
|
215 |
-
border: 2px solid orange;
|
216 |
-
}
|
217 |
-
|
218 |
.df-container {
|
219 |
background: white;
|
220 |
color: black;
|
@@ -226,26 +252,21 @@ textarea:hover, input:hover {
|
|
226 |
height: auto;
|
227 |
overflow-y: auto;
|
228 |
}
|
229 |
-
|
230 |
#suggestions-title {
|
231 |
-
text-align: center !important;
|
232 |
-
font-weight: bold !important;
|
233 |
-
color: white !important;
|
234 |
-
font-size: 4.2rem !important;
|
235 |
-
margin-bottom: 20px !important;
|
236 |
}
|
237 |
-
|
238 |
-
/* Style for the submit button */
|
239 |
.gr-button {
|
240 |
-
background-color: #ae1c93;
|
241 |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 2px 4px rgba(0, 0, 0, 0.06);
|
242 |
transition: background-color 0.3s ease;
|
243 |
}
|
244 |
-
|
245 |
.gr-button:hover {
|
246 |
background-color: #8f167b;
|
247 |
}
|
248 |
-
|
249 |
.gr-button:active {
|
250 |
background-color: #7f156b;
|
251 |
}
|
@@ -256,26 +277,35 @@ with gr.Blocks(css=custom_css) as app:
|
|
256 |
gr.HTML("<h1>🌟 Well-Being Companion</h1>")
|
257 |
with gr.Row():
|
258 |
user_input = gr.Textbox(label="Please Enter Your Message Here")
|
259 |
-
location = gr.Textbox(label="
|
260 |
-
query = gr.Textbox(label="
|
261 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
submit = gr.Button(value="Submit", variant="primary")
|
263 |
|
264 |
chatbot = gr.Chatbot(label="Chat History")
|
265 |
sentiment = gr.Textbox(label="Detected Sentiment")
|
266 |
emotion = gr.Textbox(label="Detected Emotion")
|
267 |
|
268 |
-
#
|
269 |
gr.Markdown("Suggestions", elem_id="suggestions-title")
|
270 |
|
271 |
-
suggestions = gr.DataFrame(headers=["Title", "Link"]) #
|
272 |
-
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"]) #
|
273 |
map_html = gr.HTML(label="Interactive Map")
|
|
|
274 |
|
275 |
submit.click(
|
276 |
app_function,
|
277 |
-
inputs=[user_input, location, query, chatbot],
|
278 |
-
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html],
|
279 |
)
|
280 |
|
281 |
app.launch()
|
|
|
12 |
import googlemaps
|
13 |
import folium
|
14 |
import torch
|
15 |
+
import pandas as pd
|
16 |
+
from sklearn.tree import DecisionTreeClassifier
|
17 |
+
from sklearn.ensemble import RandomForestClassifier
|
18 |
+
from sklearn.naive_bayes import GaussianNB
|
19 |
+
from sklearn.metrics import accuracy_score
|
20 |
|
21 |
# Suppress TensorFlow warnings
|
22 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
|
|
51 |
# Google Maps API Client
|
52 |
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))
|
53 |
|
54 |
+
# Disease Prediction Code
|
55 |
+
def load_data():
|
56 |
+
df = pd.read_csv("Training.csv")
|
57 |
+
tr = pd.read_csv("Testing.csv")
|
58 |
+
|
59 |
+
disease_dict = {
|
60 |
+
# Disease encoding dictionary...
|
61 |
+
}
|
62 |
+
df.replace({'prognosis': disease_dict}, inplace=True)
|
63 |
+
df = df.infer_objects(copy=False)
|
64 |
+
|
65 |
+
tr.replace({'prognosis': disease_dict}, inplace=True)
|
66 |
+
tr = tr.infer_objects(copy=False)
|
67 |
+
|
68 |
+
return df, tr, disease_dict
|
69 |
+
|
70 |
+
df, tr, disease_dict = load_data()
|
71 |
+
l1 = list(df.columns[:-1])
|
72 |
+
X = df[l1]
|
73 |
+
y = df['prognosis']
|
74 |
+
X_test = tr[l1]
|
75 |
+
y_test = tr['prognosis']
|
76 |
+
|
77 |
+
def train_models():
|
78 |
+
models = {
|
79 |
+
"Decision Tree": DecisionTreeClassifier(),
|
80 |
+
"Random Forest": RandomForestClassifier(),
|
81 |
+
"Naive Bayes": GaussianNB()
|
82 |
+
}
|
83 |
+
trained_models = {}
|
84 |
+
for model_name, model_obj in models.items():
|
85 |
+
model_obj.fit(X, y)
|
86 |
+
acc = accuracy_score(y_test, model_obj.predict(X_test))
|
87 |
+
trained_models[model_name] = (model_obj, acc)
|
88 |
+
return trained_models
|
89 |
+
|
90 |
+
trained_models = train_models()
|
91 |
+
|
92 |
+
def predict_disease(model, symptoms):
|
93 |
+
input_test = np.zeros(len(l1))
|
94 |
+
for symptom in symptoms:
|
95 |
+
if symptom in l1:
|
96 |
+
input_test[l1.index(symptom)] = 1
|
97 |
+
prediction = model.predict([input_test])[0]
|
98 |
+
return list(disease_dict.keys())[list(disease_dict.values()).index(prediction)]
|
99 |
+
|
100 |
+
def disease_prediction_interface(symptoms):
|
101 |
+
symptoms_selected = [s for s in symptoms if s != "None"]
|
102 |
+
|
103 |
+
if len(symptoms_selected) < 3:
|
104 |
+
return "Please select at least 3 symptoms for accurate prediction."
|
105 |
+
|
106 |
+
results = []
|
107 |
+
for model_name, (model, acc) in trained_models.items():
|
108 |
+
prediction = predict_disease(model, symptoms_selected)
|
109 |
+
results.append(f"{model_name} Prediction: Predicted Disease: **{prediction}** (Accuracy: **{acc * 100:.2f}%**)")
|
110 |
+
|
111 |
+
return results
|
112 |
+
|
113 |
+
# Helper Functions (for chatbot)
|
114 |
def bag_of_words(s, words):
|
|
|
115 |
bag = [0] * len(words)
|
116 |
s_words = word_tokenize(s)
|
117 |
s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
|
|
|
122 |
return np.array(bag)
|
123 |
|
124 |
def generate_chatbot_response(message, history):
|
|
|
125 |
history = history or []
|
126 |
try:
|
127 |
result = chatbot_model.predict([bag_of_words(message, words)])
|
|
|
137 |
return history, response
|
138 |
|
139 |
def analyze_sentiment(user_input):
|
|
|
140 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
141 |
with torch.no_grad():
|
142 |
outputs = model_sentiment(**inputs)
|
|
|
145 |
return f"Sentiment: {sentiment_map[sentiment_class]}"
|
146 |
|
147 |
def detect_emotion(user_input):
|
|
|
148 |
pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)
|
149 |
result = pipe(user_input)
|
150 |
emotion = result[0]["label"].lower().strip()
|
|
|
159 |
return emotion_map.get(emotion, "Unknown 🤔"), emotion
|
160 |
|
161 |
def generate_suggestions(emotion):
|
|
|
162 |
emotion_key = emotion.lower()
|
163 |
suggestions = {
|
164 |
+
# Suggestions based on emotion...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
}
|
166 |
|
|
|
167 |
formatted_suggestions = [
|
168 |
[title, f'<a href="{link}" target="_blank">{link}</a>'] for title, link in suggestions.get(emotion_key, [["No specific suggestions available.", "#"]])
|
169 |
]
|
|
|
170 |
return formatted_suggestions
|
171 |
|
172 |
def get_health_professionals_and_map(location, query):
|
|
|
173 |
try:
|
174 |
if not location or not query:
|
175 |
+
return [], ""
|
|
|
176 |
geo_location = gmaps.geocode(location)
|
177 |
if geo_location:
|
178 |
lat, lng = geo_location[0]["geometry"]["location"].values()
|
|
|
180 |
professionals = []
|
181 |
map_ = folium.Map(location=(lat, lng), zoom_start=13)
|
182 |
for place in places_result:
|
|
|
183 |
professionals.append([place['name'], place.get('vicinity', 'No address provided')])
|
184 |
folium.Marker(
|
185 |
location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
|
186 |
popup=f"{place['name']}"
|
187 |
).add_to(map_)
|
188 |
return professionals, map_._repr_html_()
|
189 |
+
return [], ""
|
|
|
190 |
except Exception as e:
|
191 |
+
return [], ""
|
192 |
|
193 |
# Main Application Logic
|
194 |
+
def app_function(user_input, location, query, symptoms, history):
|
195 |
chatbot_history, _ = generate_chatbot_response(user_input, history)
|
196 |
sentiment_result = analyze_sentiment(user_input)
|
197 |
emotion_result, cleaned_emotion = detect_emotion(user_input)
|
198 |
suggestions = generate_suggestions(cleaned_emotion)
|
199 |
professionals, map_html = get_health_professionals_and_map(location, query)
|
200 |
+
disease_results = disease_prediction_interface(symptoms)
|
201 |
+
|
202 |
+
return (
|
203 |
+
chatbot_history,
|
204 |
+
sentiment_result,
|
205 |
+
emotion_result,
|
206 |
+
suggestions,
|
207 |
+
professionals,
|
208 |
+
map_html,
|
209 |
+
disease_results
|
210 |
+
)
|
211 |
|
212 |
# CSS Styling
|
213 |
custom_css = """
|
214 |
body {
|
215 |
font-family: 'Roboto', sans-serif;
|
216 |
+
background-color: #3c6487;
|
217 |
color: white;
|
218 |
}
|
|
|
219 |
h1 {
|
220 |
background: #ffffff;
|
221 |
color: #000000;
|
|
|
225 |
text-align: center;
|
226 |
font-size: 2.5rem;
|
227 |
}
|
|
|
228 |
textarea, input {
|
229 |
background: transparent;
|
230 |
color: black;
|
|
|
235 |
outline: none;
|
236 |
border-radius: 8px;
|
237 |
}
|
|
|
238 |
textarea:focus, input:focus {
|
239 |
background: transparent;
|
240 |
color: black;
|
241 |
border: 2px solid orange;
|
242 |
outline: none;
|
243 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
.df-container {
|
245 |
background: white;
|
246 |
color: black;
|
|
|
252 |
height: auto;
|
253 |
overflow-y: auto;
|
254 |
}
|
|
|
255 |
#suggestions-title {
|
256 |
+
text-align: center !important;
|
257 |
+
font-weight: bold !important;
|
258 |
+
color: white !important;
|
259 |
+
font-size: 4.2rem !important;
|
260 |
+
margin-bottom: 20px !important;
|
261 |
}
|
|
|
|
|
262 |
.gr-button {
|
263 |
+
background-color: #ae1c93;
|
264 |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1), 0 2px 4px rgba(0, 0, 0, 0.06);
|
265 |
transition: background-color 0.3s ease;
|
266 |
}
|
|
|
267 |
.gr-button:hover {
|
268 |
background-color: #8f167b;
|
269 |
}
|
|
|
270 |
.gr-button:active {
|
271 |
background-color: #7f156b;
|
272 |
}
|
|
|
277 |
gr.HTML("<h1>🌟 Well-Being Companion</h1>")
|
278 |
with gr.Row():
|
279 |
user_input = gr.Textbox(label="Please Enter Your Message Here")
|
280 |
+
location = gr.Textbox(label="Your Current Location Here")
|
281 |
+
query = gr.Textbox(label="Search Health Professionals Nearby")
|
282 |
|
283 |
+
# New Row for Disease Prediction Symptoms
|
284 |
+
with gr.Row():
|
285 |
+
symptom1 = gr.Dropdown(choices=["None"] + l1, label="Symptom 1")
|
286 |
+
symptom2 = gr.Dropdown(choices=["None"] + l1, label="Symptom 2")
|
287 |
+
symptom3 = gr.Dropdown(choices=["None"] + l1, label="Symptom 3")
|
288 |
+
symptom4 = gr.Dropdown(choices=["None"] + l1, label="Symptom 4")
|
289 |
+
symptom5 = gr.Dropdown(choices=["None"] + l1, label="Symptom 5")
|
290 |
+
|
291 |
submit = gr.Button(value="Submit", variant="primary")
|
292 |
|
293 |
chatbot = gr.Chatbot(label="Chat History")
|
294 |
sentiment = gr.Textbox(label="Detected Sentiment")
|
295 |
emotion = gr.Textbox(label="Detected Emotion")
|
296 |
|
297 |
+
# Suggestions Title
|
298 |
gr.Markdown("Suggestions", elem_id="suggestions-title")
|
299 |
|
300 |
+
suggestions = gr.DataFrame(headers=["Title", "Link"]) # Suggestions DataFrame
|
301 |
+
professionals = gr.DataFrame(label="Nearby Health Professionals", headers=["Name", "Address"]) # Professionals DataFrame
|
302 |
map_html = gr.HTML(label="Interactive Map")
|
303 |
+
disease_predictions = gr.Textbox(label="Disease Predictions") # For Disease Prediction Results
|
304 |
|
305 |
submit.click(
|
306 |
app_function,
|
307 |
+
inputs=[user_input, location, query, [symptom1, symptom2, symptom3, symptom4, symptom5], chatbot],
|
308 |
+
outputs=[chatbot, sentiment, emotion, suggestions, professionals, map_html, disease_predictions],
|
309 |
)
|
310 |
|
311 |
app.launch()
|