Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
|
|
3 |
import nltk
|
4 |
import numpy as np
|
5 |
import tflearn
|
@@ -11,8 +11,8 @@ from nltk.stem.lancaster import LancasterStemmer
|
|
11 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
12 |
import googlemaps
|
13 |
import folium
|
14 |
-
import
|
15 |
-
import
|
16 |
|
17 |
# Disable GPU usage for TensorFlow
|
18 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
@@ -62,7 +62,6 @@ def chatbot(message, history):
|
|
62 |
results = model.predict([bag_of_words(message, words)])
|
63 |
results_index = np.argmax(results)
|
64 |
tag = labels[results_index]
|
65 |
-
|
66 |
# Match tag with intent and choose a random response
|
67 |
for tg in data["intents"]:
|
68 |
if tg['tag'] == tag:
|
@@ -73,11 +72,9 @@ def chatbot(message, history):
|
|
73 |
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
|
74 |
except Exception as e:
|
75 |
response = f"An error occurred: {str(e)}"
|
76 |
-
|
77 |
# Convert the new message and response to the 'messages' format
|
78 |
history.append({"role": "user", "content": message})
|
79 |
history.append({"role": "assistant", "content": response})
|
80 |
-
|
81 |
return history, history
|
82 |
|
83 |
# Sentiment Analysis using Hugging Face model
|
@@ -88,9 +85,9 @@ def analyze_sentiment(user_input):
|
|
88 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
89 |
with torch.no_grad():
|
90 |
outputs = model_sentiment(**inputs)
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
|
95 |
# Emotion Detection using Hugging Face model
|
96 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
@@ -173,10 +170,9 @@ def generate_suggestions(emotion):
|
|
173 |
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch Video</a>'}
|
174 |
]
|
175 |
}
|
176 |
-
|
177 |
return suggestions.get(emotion, [])
|
178 |
|
179 |
-
# Gradio interface
|
180 |
def gradio_app(message, location, health_query, submit_button, history, state):
|
181 |
if submit_button:
|
182 |
# Chatbot interaction
|
@@ -197,14 +193,49 @@ def gradio_app(message, location, health_query, submit_button, history, state):
|
|
197 |
# Create a DataFrame for displaying suggestions
|
198 |
suggestions_df = pd.DataFrame(suggestions)
|
199 |
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
else:
|
202 |
-
return history, "", "", "", "", gr.DataFrame([], headers=["Title", "Subject", "Link"]), state
|
203 |
|
204 |
# Gradio UI components
|
205 |
message_input = gr.Textbox(lines=1, label="Message", placeholder="Type your message here...")
|
206 |
location_input = gr.Textbox(value="Honolulu, HI", label="Current Location", placeholder="Enter your current location...")
|
207 |
-
health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, health professional, well-being professional", placeholder="Search for health professionals...")
|
208 |
submit_button = gr.Button("Submit")
|
209 |
|
210 |
# Updated chat history component with 'messages' type
|
@@ -216,6 +247,7 @@ emotion_output = gr.Textbox(label="Emotion Detection Result")
|
|
216 |
route_info_output = gr.Textbox(label="Health Professionals Information")
|
217 |
map_output = gr.HTML(label="Map with Health Professionals")
|
218 |
suggestions_output = gr.DataFrame(label="Well-Being Suggestions", headers=["Title", "Subject", "Link"])
|
|
|
219 |
|
220 |
# Custom CSS for styling
|
221 |
custom_css = """
|
@@ -225,11 +257,9 @@ body {
|
|
225 |
color: #333;
|
226 |
font-family: Arial, sans-serif;
|
227 |
}
|
228 |
-
|
229 |
h1, h2, h3, h4, h5, h6 {
|
230 |
color: #0056b3;
|
231 |
}
|
232 |
-
|
233 |
.gradio-app {
|
234 |
max-width: 800px;
|
235 |
margin: 0 auto;
|
@@ -238,11 +268,9 @@ h1, h2, h3, h4, h5, h6 {
|
|
238 |
border-radius: 10px;
|
239 |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
240 |
}
|
241 |
-
|
242 |
.gradio-input, .gradio-output {
|
243 |
margin-bottom: 15px;
|
244 |
}
|
245 |
-
|
246 |
.gradio-button {
|
247 |
background-color: #0056b3;
|
248 |
color: #fff;
|
@@ -251,43 +279,41 @@ h1, h2, h3, h4, h5, h6 {
|
|
251 |
border-radius: 5px;
|
252 |
cursor: pointer;
|
253 |
}
|
254 |
-
|
255 |
.gradio-button:hover {
|
256 |
background-color: #004080;
|
257 |
}
|
258 |
-
|
259 |
.gradio-dataframe {
|
260 |
border: 1px solid #ddd;
|
261 |
border-radius: 5px;
|
262 |
overflow: hidden;
|
263 |
}
|
264 |
-
|
265 |
.gradio-dataframe th, .gradio-dataframe td {
|
266 |
padding: 10px;
|
267 |
text-align: left;
|
268 |
}
|
269 |
-
|
270 |
.gradio-dataframe th {
|
271 |
background-color: #0056b3;
|
272 |
color: #fff;
|
273 |
}
|
274 |
-
|
275 |
.gradio-dataframe a {
|
276 |
color: #0056b3;
|
277 |
text-decoration: none;
|
278 |
}
|
279 |
-
|
280 |
.gradio-dataframe a:hover {
|
281 |
text-decoration: underline;
|
282 |
}
|
|
|
|
|
|
|
|
|
283 |
</style>
|
284 |
"""
|
285 |
|
286 |
# Create Gradio interface
|
287 |
-
|
288 |
-
fn=gradio_app,
|
289 |
-
inputs=[message_input, location_input, health_query_input, submit_button, gr.State()],
|
290 |
-
outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output, gr.State()],
|
291 |
allow_flagging="never",
|
292 |
live=False,
|
293 |
title="Well-Being App: Support, Sentiment, Emotion Detection & Health Professional Search",
|
@@ -295,4 +321,5 @@ iface = gr.Interface(
|
|
295 |
)
|
296 |
|
297 |
# Launch the Gradio interface
|
298 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
import nltk
|
4 |
import numpy as np
|
5 |
import tflearn
|
|
|
11 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
12 |
import googlemaps
|
13 |
import folium
|
14 |
+
import os
|
15 |
+
import base64
|
16 |
|
17 |
# Disable GPU usage for TensorFlow
|
18 |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
|
|
|
62 |
results = model.predict([bag_of_words(message, words)])
|
63 |
results_index = np.argmax(results)
|
64 |
tag = labels[results_index]
|
|
|
65 |
# Match tag with intent and choose a random response
|
66 |
for tg in data["intents"]:
|
67 |
if tg['tag'] == tag:
|
|
|
72 |
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
|
73 |
except Exception as e:
|
74 |
response = f"An error occurred: {str(e)}"
|
|
|
75 |
# Convert the new message and response to the 'messages' format
|
76 |
history.append({"role": "user", "content": message})
|
77 |
history.append({"role": "assistant", "content": response})
|
|
|
78 |
return history, history
|
79 |
|
80 |
# Sentiment Analysis using Hugging Face model
|
|
|
85 |
inputs = tokenizer_sentiment(user_input, return_tensors="pt")
|
86 |
with torch.no_grad():
|
87 |
outputs = model_sentiment(**inputs)
|
88 |
+
predicted_class = torch.argmax(outputs.logits, dim=1).item()
|
89 |
+
sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
|
90 |
+
return f"Predicted Sentiment: {sentiment}"
|
91 |
|
92 |
# Emotion Detection using Hugging Face model
|
93 |
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
|
|
170 |
{"Title": "Relaxation Video", "Subject": "Video", "Link": '<a href="https://youtu.be/m1vaUGtyo-A" target="_blank">Watch Video</a>'}
|
171 |
]
|
172 |
}
|
|
|
173 |
return suggestions.get(emotion, [])
|
174 |
|
175 |
+
# Define the Gradio interface
|
176 |
def gradio_app(message, location, health_query, submit_button, history, state):
|
177 |
if submit_button:
|
178 |
# Chatbot interaction
|
|
|
193 |
# Create a DataFrame for displaying suggestions
|
194 |
suggestions_df = pd.DataFrame(suggestions)
|
195 |
|
196 |
+
# Add emoticons based on emotion
|
197 |
+
emoticon = {
|
198 |
+
'joy': 'π',
|
199 |
+
'anger': 'π‘',
|
200 |
+
'fear': 'π¨',
|
201 |
+
'sadness': 'π’',
|
202 |
+
'surprise': 'π²'
|
203 |
+
}
|
204 |
+
|
205 |
+
# Add info graphics based on emotion
|
206 |
+
info_graphics = {
|
207 |
+
'joy': 'joy.png',
|
208 |
+
'anger': 'anger.png',
|
209 |
+
'fear': 'fear.png',
|
210 |
+
'sadness': 'sadness.png',
|
211 |
+
'surprise': 'surprise.png'
|
212 |
+
}
|
213 |
+
|
214 |
+
# Convert image to base64 for embedding in HTML
|
215 |
+
if info_graphics.get(emotion_response.split(': ')[1]):
|
216 |
+
with open(info_graphics[emotion_response.split(': ')[1]], "rb") as image_file:
|
217 |
+
encoded_string = base64.b64encode(image_file.read()).decode()
|
218 |
+
info_graphic_html = f'<img src="data:image/png;base64,{encoded_string}" alt="{emotion_response.split(": ")[1]}">'
|
219 |
+
else:
|
220 |
+
info_graphic_html = ''
|
221 |
+
|
222 |
+
return (
|
223 |
+
history,
|
224 |
+
sentiment_response,
|
225 |
+
f"{emotion_response} {emoticon.get(emotion_response.split(': ')[1], '')}",
|
226 |
+
route_info,
|
227 |
+
map_html,
|
228 |
+
gr.DataFrame(suggestions_df, headers=["Title", "Subject", "Link"]),
|
229 |
+
info_graphic_html,
|
230 |
+
state
|
231 |
+
)
|
232 |
else:
|
233 |
+
return history, "", "", "", "", gr.DataFrame([], headers=["Title", "Subject", "Link"]), "", state
|
234 |
|
235 |
# Gradio UI components
|
236 |
message_input = gr.Textbox(lines=1, label="Message", placeholder="Type your message here...")
|
237 |
location_input = gr.Textbox(value="Honolulu, HI", label="Current Location", placeholder="Enter your current location...")
|
238 |
+
health_query_input = gr.Textbox(value="doctor", label="Health Professional Query (e.g., doctor, health professional, well-being professional)", placeholder="Search for health professionals...")
|
239 |
submit_button = gr.Button("Submit")
|
240 |
|
241 |
# Updated chat history component with 'messages' type
|
|
|
247 |
route_info_output = gr.Textbox(label="Health Professionals Information")
|
248 |
map_output = gr.HTML(label="Map with Health Professionals")
|
249 |
suggestions_output = gr.DataFrame(label="Well-Being Suggestions", headers=["Title", "Subject", "Link"])
|
250 |
+
info_graphic_output = gr.HTML(label="Info Graphic")
|
251 |
|
252 |
# Custom CSS for styling
|
253 |
custom_css = """
|
|
|
257 |
color: #333;
|
258 |
font-family: Arial, sans-serif;
|
259 |
}
|
|
|
260 |
h1, h2, h3, h4, h5, h6 {
|
261 |
color: #0056b3;
|
262 |
}
|
|
|
263 |
.gradio-app {
|
264 |
max-width: 800px;
|
265 |
margin: 0 auto;
|
|
|
268 |
border-radius: 10px;
|
269 |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
270 |
}
|
|
|
271 |
.gradio-input, .gradio-output {
|
272 |
margin-bottom: 15px;
|
273 |
}
|
|
|
274 |
.gradio-button {
|
275 |
background-color: #0056b3;
|
276 |
color: #fff;
|
|
|
279 |
border-radius: 5px;
|
280 |
cursor: pointer;
|
281 |
}
|
|
|
282 |
.gradio-button:hover {
|
283 |
background-color: #004080;
|
284 |
}
|
|
|
285 |
.gradio-dataframe {
|
286 |
border: 1px solid #ddd;
|
287 |
border-radius: 5px;
|
288 |
overflow: hidden;
|
289 |
}
|
|
|
290 |
.gradio-dataframe th, .gradio-dataframe td {
|
291 |
padding: 10px;
|
292 |
text-align: left;
|
293 |
}
|
|
|
294 |
.gradio-dataframe th {
|
295 |
background-color: #0056b3;
|
296 |
color: #fff;
|
297 |
}
|
|
|
298 |
.gradio-dataframe a {
|
299 |
color: #0056b3;
|
300 |
text-decoration: none;
|
301 |
}
|
|
|
302 |
.gradio-dataframe a:hover {
|
303 |
text-decoration: underline;
|
304 |
}
|
305 |
+
.info-graphic img {
|
306 |
+
max-width: 100%;
|
307 |
+
height: auto;
|
308 |
+
}
|
309 |
</style>
|
310 |
"""
|
311 |
|
312 |
# Create Gradio interface
|
313 |
+
demo = gr.Interface(
|
314 |
+
fn=gradio_app,
|
315 |
+
inputs=[message_input, location_input, health_query_input, submit_button, gr.State(), gr.State()],
|
316 |
+
outputs=[chat_history, sentiment_output, emotion_output, route_info_output, map_output, suggestions_output, info_graphic_output, gr.State()],
|
317 |
allow_flagging="never",
|
318 |
live=False,
|
319 |
title="Well-Being App: Support, Sentiment, Emotion Detection & Health Professional Search",
|
|
|
321 |
)
|
322 |
|
323 |
# Launch the Gradio interface
|
324 |
+
if __name__ == "__main__":
|
325 |
+
demo.launch()
|