Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ from sklearn.tree import DecisionTreeClassifier
|
|
17 |
from sklearn.ensemble import RandomForestClassifier
|
18 |
from sklearn.naive_bayes import GaussianNB
|
19 |
from sklearn.metrics import accuracy_score
|
20 |
-
|
21 |
|
22 |
# Suppress TensorFlow warnings
|
23 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # No GPU available, use CPU only
|
@@ -87,6 +87,10 @@ y = df['prognosis']
|
|
87 |
X_test = tr[l1]
|
88 |
y_test = tr['prognosis']
|
89 |
|
|
|
|
|
|
|
|
|
90 |
def train_models():
|
91 |
models = {
|
92 |
"Decision Tree": DecisionTreeClassifier(),
|
@@ -95,7 +99,7 @@ def train_models():
|
|
95 |
}
|
96 |
trained_models = {}
|
97 |
for model_name, model_obj in models.items():
|
98 |
-
model_obj.fit(X,
|
99 |
acc = accuracy_score(y_test, model_obj.predict(X_test))
|
100 |
trained_models[model_name] = (model_obj, acc)
|
101 |
return trained_models
|
|
|
17 |
from sklearn.ensemble import RandomForestClassifier
|
18 |
from sklearn.naive_bayes import GaussianNB
|
19 |
from sklearn.metrics import accuracy_score
|
20 |
+
from sklearn.preprocessing import LabelEncoder
|
21 |
|
22 |
# Suppress TensorFlow warnings
|
23 |
os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # No GPU available, use CPU only
|
|
|
87 |
X_test = tr[l1]
|
88 |
y_test = tr['prognosis']
|
89 |
|
90 |
+
# Encode the target variable
|
91 |
+
le = LabelEncoder()
|
92 |
+
y_encoded = le.fit_transform(y) # Encode string labels into integers
|
93 |
+
|
94 |
def train_models():
|
95 |
models = {
|
96 |
"Decision Tree": DecisionTreeClassifier(),
|
|
|
99 |
}
|
100 |
trained_models = {}
|
101 |
for model_name, model_obj in models.items():
|
102 |
+
model_obj.fit(X, y_encoded) # Use encoded labels
|
103 |
acc = accuracy_score(y_test, model_obj.predict(X_test))
|
104 |
trained_models[model_name] = (model_obj, acc)
|
105 |
return trained_models
|