Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,8 +7,6 @@ import time
|
|
7 |
import re
|
8 |
from bs4 import BeautifulSoup
|
9 |
import pandas as pd
|
10 |
-
from selenium import webdriver
|
11 |
-
from selenium.webdriver.chrome.options import Options
|
12 |
import chromedriver_autoinstaller
|
13 |
import os
|
14 |
import nltk
|
@@ -20,7 +18,6 @@ import json
|
|
20 |
import pickle
|
21 |
from nltk.tokenize import word_tokenize
|
22 |
from nltk.stem.lancaster import LancasterStemmer
|
23 |
-
import subprocess
|
24 |
|
25 |
# Ensure necessary NLTK resources are downloaded
|
26 |
nltk.download('punkt')
|
@@ -111,40 +108,6 @@ query = "therapist OR counselor OR mental health professional OR marriage and fa
|
|
111 |
location = "21.3,-157.8" # Center of Hawaii (Oahu)
|
112 |
radius = 50000 # 50 km radius
|
113 |
|
114 |
-
# Install Chrome and Chromedriver
|
115 |
-
def install_chrome_and_driver():
|
116 |
-
# Install Chrome (if not already installed)
|
117 |
-
os.system("apt-get update && apt-get install -y wget curl sudo")
|
118 |
-
os.system("wget -q https://dl.google.com/linux/direct/google-chrome-stable_current_amd64.deb")
|
119 |
-
os.system("sudo dpkg -i google-chrome-stable_current_amd64.deb")
|
120 |
-
os.system("sudo apt-get install -y -f")
|
121 |
-
os.system("google-chrome-stable --version")
|
122 |
-
|
123 |
-
# Fix ownership of /etc/sudo.conf
|
124 |
-
os.system("sudo chown root:root /etc/sudo.conf")
|
125 |
-
|
126 |
-
# Verify Chrome installation
|
127 |
-
os.system("which google-chrome-stable")
|
128 |
-
if not os.path.exists("/usr/bin/google-chrome-stable"):
|
129 |
-
raise RuntimeError("Google Chrome was not installed correctly")
|
130 |
-
|
131 |
-
# Check if CUDA libraries are available and install them if present
|
132 |
-
try:
|
133 |
-
os.system("apt-get install -y cuda")
|
134 |
-
os.system("apt-get install -y libcudart.so.11.0")
|
135 |
-
except subprocess.CalledProcessError:
|
136 |
-
print("CUDA libraries not found or installation failed. Proceeding without GPU support.")
|
137 |
-
|
138 |
-
# Install Chromedriver (if not already installed)
|
139 |
-
chromedriver_autoinstaller.install()
|
140 |
-
|
141 |
-
# Verify Chromedriver installation
|
142 |
-
os.system("which chromedriver")
|
143 |
-
if not os.path.exists("/usr/local/bin/chromedriver"):
|
144 |
-
raise RuntimeError("ChromeDriver was not installed correctly")
|
145 |
-
|
146 |
-
install_chrome_and_driver()
|
147 |
-
|
148 |
# Function to send a request to Google Places API and fetch places data
|
149 |
def get_places_data(query, location, radius, api_key, next_page_token=None):
|
150 |
params = {
|
@@ -184,8 +147,8 @@ def get_place_details(place_id, api_key):
|
|
184 |
else:
|
185 |
return {}
|
186 |
|
187 |
-
# Scrape website URL from Google Maps results (using Selenium)
|
188 |
-
def
|
189 |
chrome_options = Options()
|
190 |
chrome_options.add_argument("--headless")
|
191 |
chrome_options.add_argument("--no-sandbox")
|
@@ -206,7 +169,7 @@ def scrape_website_from_google_maps(place_name):
|
|
206 |
return website_url
|
207 |
|
208 |
# Scraping the website to extract phone number or email
|
209 |
-
def
|
210 |
phone_number = "Not available"
|
211 |
email = "Not available"
|
212 |
|
@@ -244,7 +207,7 @@ def get_all_places(query, location, radius, api_key):
|
|
244 |
address = place.get("formatted_address")
|
245 |
rating = place.get("rating", "Not available")
|
246 |
business_status = place.get("business_status", "Not available")
|
247 |
-
user_ratings_total = place.get("
|
248 |
website = place.get("website", "Not available")
|
249 |
types = ", ".join(place.get("types", []))
|
250 |
location = place.get("geometry", {}).get("location", {})
|
@@ -254,15 +217,15 @@ def get_all_places(query, location, radius, api_key):
|
|
254 |
details = get_place_details(place_id, api_key)
|
255 |
phone_number = details.get("phone_number", "Not available")
|
256 |
if phone_number == "Not available" and website != "Not available":
|
257 |
-
phone_number, email =
|
258 |
else:
|
259 |
email = "Not available"
|
260 |
|
261 |
if website == "Not available":
|
262 |
-
website =
|
263 |
|
264 |
all_results.append([name, address, phone_number, rating, business_status,
|
265 |
-
|
266 |
details.get("opening_hours", "Not available"),
|
267 |
details.get("reviews", "Not available"), email])
|
268 |
|
@@ -282,7 +245,7 @@ def save_to_csv(data, filename):
|
|
282 |
writer = csv.writer(file)
|
283 |
writer.writerow([
|
284 |
"Name", "Address", "Phone", "Rating", "Business Status",
|
285 |
-
"User
|
286 |
"Opening Hours", "Reviews", "Email"
|
287 |
])
|
288 |
writer.writerows(data)
|
@@ -306,7 +269,7 @@ with gr.Blocks() as demo:
|
|
306 |
|
307 |
# Model prediction for emotion detection
|
308 |
def predict_emotion(text):
|
309 |
-
pipe = pipeline("text-classification", model=model, tokenizer=
|
310 |
result = pipe(text)
|
311 |
emotion = result[0]['label']
|
312 |
return emotion
|
@@ -318,13 +281,13 @@ with gr.Blocks() as demo:
|
|
318 |
if emotion == 'joy':
|
319 |
return "You're feeling happy! Keep up the great mood!\nUseful Resources:\n[Relaxation Techniques](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)\n[Dealing with Stress](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)"
|
320 |
elif emotion == 'anger':
|
321 |
-
return "You're feeling angry. It's okay to feel this way. Let's try to calm down.\nUseful Resources:\n[Emotional Wellness
|
322 |
elif emotion == 'fear':
|
323 |
-
return "You're feeling fearful. Take a moment to breathe and relax.\nUseful Resources:\n[Mindfulness
|
324 |
elif emotion == 'sadness':
|
325 |
-
return "You're feeling sad. It's okay to take a break.\nUseful Resources:\n[Emotional
|
326 |
elif emotion == 'surprise':
|
327 |
-
return "You're feeling surprised. It's okay to feel neutral!\nUseful Resources:\n[Managing
|
328 |
|
329 |
emotion_output = gr.Textbox(label="Emotion Detected")
|
330 |
emotion_output.change(show_suggestions, inputs=emotion_output, outputs=gr.Textbox(label="Suggestions"))
|
@@ -347,10 +310,12 @@ with gr.Blocks() as demo:
|
|
347 |
message = message.lower()
|
348 |
|
349 |
try:
|
|
|
350 |
results = model.predict([bag_of_words(message, words)])
|
351 |
results_index = np.argmax(results)
|
352 |
tag = labels[results_index]
|
353 |
|
|
|
354 |
for tg in data["intents"]:
|
355 |
if tg['tag'] == tag:
|
356 |
responses = tg['responses']
|
@@ -369,7 +334,7 @@ with gr.Blocks() as demo:
|
|
369 |
|
370 |
# User input for text (sentiment analysis)
|
371 |
user_input_sentiment = gr.Textbox(lines=1, label="Enter text to analyze sentiment:")
|
372 |
-
|
373 |
# Prediction button for sentiment analysis
|
374 |
def predict_sentiment(text):
|
375 |
inputs = tokenizer_sentiment(text, return_tensors="pt")
|
@@ -383,13 +348,13 @@ with gr.Blocks() as demo:
|
|
383 |
user_input_sentiment.change(predict_sentiment, inputs=user_input_sentiment, outputs=sentiment_output)
|
384 |
|
385 |
# Button to fetch wellness professionals data
|
386 |
-
fetch_button = gr.Button("Fetch Wellness
|
387 |
-
data_output = gr.Dataframe(headers=["Name", "Address", "Phone", "Rating", "Business Status", "User
|
388 |
|
389 |
def fetch_data():
|
390 |
all_results = get_all_places(query, location, radius, api_key)
|
391 |
if all_results:
|
392 |
-
return pd.DataFrame(all_results, columns=["Name", "Address", "Phone", "Rating", "Business Status", "User
|
393 |
else:
|
394 |
return "No data found."
|
395 |
|
|
|
7 |
import re
|
8 |
from bs4 import BeautifulSoup
|
9 |
import pandas as pd
|
|
|
|
|
10 |
import chromedriver_autoinstaller
|
11 |
import os
|
12 |
import nltk
|
|
|
18 |
import pickle
|
19 |
from nltk.tokenize import word_tokenize
|
20 |
from nltk.stem.lancaster import LancasterStemmer
|
|
|
21 |
|
22 |
# Ensure necessary NLTK resources are downloaded
|
23 |
nltk.download('punkt')
|
|
|
108 |
location = "21.3,-157.8" # Center of Hawaii (Oahu)
|
109 |
radius = 50000 # 50 km radius
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
# Function to send a request to Google Places API and fetch places data
|
112 |
def get_places_data(query, location, radius, api_key, next_page_token=None):
|
113 |
params = {
|
|
|
147 |
else:
|
148 |
return {}
|
149 |
|
150 |
+
# Scrape website URL from Google Maps results (using Selenium WebDriver)
|
151 |
+
def scrape_div_from_google_maps(place_name):
|
152 |
chrome_options = Options()
|
153 |
chrome_options.add_argument("--headless")
|
154 |
chrome_options.add_argument("--no-sandbox")
|
|
|
169 |
return website_url
|
170 |
|
171 |
# Scraping the website to extract phone number or email
|
172 |
+
def scrape_div_for_contact_info(website):
|
173 |
phone_number = "Not available"
|
174 |
email = "Not available"
|
175 |
|
|
|
207 |
address = place.get("formatted_address")
|
208 |
rating = place.get("rating", "Not available")
|
209 |
business_status = place.get("business_status", "Not available")
|
210 |
+
user_ratings_total = place.get("user_reviews_total", "Not available")
|
211 |
website = place.get("website", "Not available")
|
212 |
types = ", ".join(place.get("types", []))
|
213 |
location = place.get("geometry", {}).get("location", {})
|
|
|
217 |
details = get_place_details(place_id, api_key)
|
218 |
phone_number = details.get("phone_number", "Not available")
|
219 |
if phone_number == "Not available" and website != "Not available":
|
220 |
+
phone_number, email = scrape_div_for_contact_info(website)
|
221 |
else:
|
222 |
email = "Not available"
|
223 |
|
224 |
if website == "Not available":
|
225 |
+
website = scrape_div_from_google_maps(name)
|
226 |
|
227 |
all_results.append([name, address, phone_number, rating, business_status,
|
228 |
+
user_div_total, website, types, latitude, longitude,
|
229 |
details.get("opening_hours", "Not available"),
|
230 |
details.get("reviews", "Not available"), email])
|
231 |
|
|
|
245 |
writer = csv.writer(file)
|
246 |
writer.writerow([
|
247 |
"Name", "Address", "Phone", "Rating", "Business Status",
|
248 |
+
"User Reviews Total", "Website", "Types", "Latitude", "Longitude",
|
249 |
"Opening Hours", "Reviews", "Email"
|
250 |
])
|
251 |
writer.writerows(data)
|
|
|
269 |
|
270 |
# Model prediction for emotion detection
|
271 |
def predict_emotion(text):
|
272 |
+
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer_sentiment)
|
273 |
result = pipe(text)
|
274 |
emotion = result[0]['label']
|
275 |
return emotion
|
|
|
281 |
if emotion == 'joy':
|
282 |
return "You're feeling happy! Keep up the great mood!\nUseful Resources:\n[Relaxation Techniques](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)\n[Dealing with Stress](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n[Emotional Wellness Toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)"
|
283 |
elif emotion == 'anger':
|
284 |
+
return "You're feeling angry. It's okay to feel this way. Let's try to calm down.\nUseful Resources:\n[Emotional Wellness toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n[Stress management tips](https://www.health.harvard.edu/health-a-to-z)\n[Dealing with anger](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/MIc299Flibs)"
|
285 |
elif emotion == 'fear':
|
286 |
+
return "You're feeling fearful. Take a moment to breathe and relax.\nUseful Resources:\n[Mindfulness practices](https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation)\n[Coping with anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n[Emotional wellness toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/yGKKz185M5o)"
|
287 |
elif emotion == 'sadness':
|
288 |
+
return "You're feeling sad. It's okay to take a break.\nUseful Resources:\n[Emotional wellness toolkit](https://www.nih.gov/health-information/emotional-wellness-toolkit)\n[Dealing with anxiety](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/-e-4Kx5px_I)"
|
289 |
elif emotion == 'surprise':
|
290 |
+
return "You're feeling surprised. It's okay to feel neutral!\nUseful Resources:\n[Managing stress](https://www.health.harvard.edu/health-a-to-z)\n[Coping strategies](https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety)\n\nRelaxation Videos:\n[Watch on YouTube](https://youtu.be/m1vaUGtyo-A)"
|
291 |
|
292 |
emotion_output = gr.Textbox(label="Emotion Detected")
|
293 |
emotion_output.change(show_suggestions, inputs=emotion_output, outputs=gr.Textbox(label="Suggestions"))
|
|
|
310 |
message = message.lower()
|
311 |
|
312 |
try:
|
313 |
+
# Predict the tag
|
314 |
results = model.predict([bag_of_words(message, words)])
|
315 |
results_index = np.argmax(results)
|
316 |
tag = labels[results_index]
|
317 |
|
318 |
+
# Match tag with intent and choose a random response
|
319 |
for tg in data["intents"]:
|
320 |
if tg['tag'] == tag:
|
321 |
responses = tg['responses']
|
|
|
334 |
|
335 |
# User input for text (sentiment analysis)
|
336 |
user_input_sentiment = gr.Textbox(lines=1, label="Enter text to analyze sentiment:")
|
337 |
+
|
338 |
# Prediction button for sentiment analysis
|
339 |
def predict_sentiment(text):
|
340 |
inputs = tokenizer_sentiment(text, return_tensors="pt")
|
|
|
348 |
user_input_sentiment.change(predict_sentiment, inputs=user_input_sentiment, outputs=sentiment_output)
|
349 |
|
350 |
# Button to fetch wellness professionals data
|
351 |
+
fetch_button = gr.Button("Fetch Wellness professionals data")
|
352 |
+
data_output = gr.Dataframe(headers=["Name", "Address", "Phone", "Rating", "Business Status", "User Reviews Total", "Website", "Types", "Latitude", "Longitude", "Opening Hours", "Reviews", "Email"])
|
353 |
|
354 |
def fetch_data():
|
355 |
all_results = get_all_places(query, location, radius, api_key)
|
356 |
if all_results:
|
357 |
+
return pd.DataFrame(all_results, columns=["Name", "Address", "Phone", "Rating", "Business Status", "User Reviews Total", "Website", "Types", "Latitude", "Longitude", "Opening Hours", "Reviews", "Email"])
|
358 |
else:
|
359 |
return "No data found."
|
360 |
|