Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,6 @@ import gradio as gr
|
|
2 |
import nltk
|
3 |
import numpy as np
|
4 |
import tflearn
|
5 |
-
import random
|
6 |
-
import json
|
7 |
-
import pickle
|
8 |
import torch
|
9 |
from nltk.tokenize import word_tokenize
|
10 |
from nltk.stem.lancaster import LancasterStemmer
|
@@ -17,10 +14,10 @@ from selenium import webdriver
|
|
17 |
from selenium.webdriver.chrome.options import Options
|
18 |
import chromedriver_autoinstaller
|
19 |
|
20 |
-
# Ensure
|
21 |
nltk.download('punkt')
|
22 |
|
23 |
-
#
|
24 |
GOOGLE_MAPS_API_KEY = os.environ.get("GOOGLE_API_KEY") # Get API key from environment variable
|
25 |
if not GOOGLE_MAPS_API_KEY:
|
26 |
raise ValueError("Error: GOOGLE_MAPS_API_KEY environment variable not set.")
|
@@ -29,8 +26,7 @@ url = "https://maps.googleapis.com/maps/api/place/textsearch/json"
|
|
29 |
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"
|
30 |
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"
|
31 |
|
32 |
-
|
33 |
-
# --- Chatbot Logic ---
|
34 |
stemmer = LancasterStemmer()
|
35 |
|
36 |
try:
|
@@ -40,8 +36,8 @@ except FileNotFoundError:
|
|
40 |
raise FileNotFoundError("Error: 'intents.json' file not found.")
|
41 |
|
42 |
try:
|
43 |
-
with open("data.pickle", "rb") as
|
44 |
-
words, labels, training, output = pickle.load(
|
45 |
except FileNotFoundError:
|
46 |
raise FileNotFoundError("Error: 'data.pickle' file not found.")
|
47 |
|
@@ -49,9 +45,9 @@ net = tflearn.input_data(shape=[None, len(training[0])])
|
|
49 |
net = tflearn.fully_connected(net, 8)
|
50 |
net = tflearn.fully_connected(net, 8)
|
51 |
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
|
52 |
-
net = tflearn.regression(net)
|
53 |
|
54 |
model = tflearn.DNN(net)
|
|
|
55 |
try:
|
56 |
model.load("MentalHealthChatBotmodel.tflearn")
|
57 |
except FileNotFoundError:
|
@@ -78,47 +74,39 @@ def chat(message, history):
|
|
78 |
if tg['tag'] == tag:
|
79 |
responses = tg['responses']
|
80 |
response = random.choice(responses)
|
81 |
-
|
82 |
-
else:
|
83 |
-
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
|
84 |
except Exception as e:
|
85 |
-
response =
|
86 |
-
|
87 |
return history, history
|
88 |
|
89 |
-
#
|
90 |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
91 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
92 |
|
93 |
def analyze_sentiment(text):
|
94 |
try:
|
95 |
-
inputs = tokenizer(text, return_tensors="pt"
|
96 |
with torch.no_grad():
|
97 |
-
|
98 |
-
|
99 |
-
sentiment = ["Negative", "Neutral", "Positive"][predicted_class]
|
100 |
return f"**Predicted Sentiment:** {sentiment}"
|
101 |
except Exception as e:
|
102 |
return f"Error analyzing sentiment: {str(e)}"
|
103 |
|
104 |
-
#
|
105 |
def detect_emotion(text):
|
106 |
-
#
|
107 |
return "Emotion detection not implemented"
|
108 |
|
109 |
-
#
|
110 |
def provide_suggestions(emotion):
|
111 |
-
#
|
112 |
return pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
|
113 |
|
114 |
-
#
|
115 |
def get_places_data(query, location, radius, api_key, next_page_token=None):
|
116 |
-
params = {
|
117 |
-
"query": query,
|
118 |
-
"location": location,
|
119 |
-
"radius": radius,
|
120 |
-
"key": api_key
|
121 |
-
}
|
122 |
if next_page_token:
|
123 |
params["pagetoken"] = next_page_token
|
124 |
response = requests.get(url, params=params)
|
@@ -140,28 +128,11 @@ def get_place_details(place_id, api_key):
|
|
140 |
else:
|
141 |
return {}
|
142 |
|
143 |
-
def scrape_website_from_google_maps(place_name):
|
144 |
-
chrome_options = Options()
|
145 |
-
chrome_options.add_argument("--headless")
|
146 |
-
chrome_options.add_argument("--no-sandbox")
|
147 |
-
chrome_options.add_argument("--disable-dev-shm-usage")
|
148 |
-
driver = webdriver.Chrome(options=chrome_options)
|
149 |
-
search_url = f"https://www.google.com/maps/search/{place_name.replace(' ', '+')}"
|
150 |
-
driver.get(search_url)
|
151 |
-
time.sleep(5)
|
152 |
-
try:
|
153 |
-
website_element = driver.find_element("xpath", '//a[contains(@aria-label, "Visit") and contains(@aria-label, "website")]')
|
154 |
-
website_url = website_element.get_attribute('href')
|
155 |
-
except:
|
156 |
-
website_url = "Not available"
|
157 |
-
driver.quit()
|
158 |
-
return website_url
|
159 |
-
|
160 |
def get_all_places(query, location, radius, api_key):
|
161 |
all_results = []
|
162 |
next_page_token = None
|
163 |
while True:
|
164 |
-
data = get_places_data(query
|
165 |
if data:
|
166 |
results = data.get('results', [])
|
167 |
for place in results:
|
@@ -179,52 +150,22 @@ def get_all_places(query, location, radius, api_key):
|
|
179 |
break
|
180 |
return all_results
|
181 |
|
182 |
-
#
|
183 |
-
def gradio_interface(message, location, state
|
184 |
history = state or []
|
185 |
-
if
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
wellness_results = pd.DataFrame([["Error fetching data: " + str(e), "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
|
196 |
-
else:
|
197 |
-
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
|
198 |
else:
|
199 |
-
history = history
|
200 |
-
sentiment = ""
|
201 |
-
emotion = ""
|
202 |
-
suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
|
203 |
-
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
|
204 |
-
elif len(history) > 0 and location == "":
|
205 |
-
if btn_chat:
|
206 |
-
history, _ = chat(message, history)
|
207 |
-
sentiment = analyze_sentiment(message)
|
208 |
-
emotion = detect_emotion(message)
|
209 |
-
suggestions = provide_suggestions(emotion)
|
210 |
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
|
211 |
-
else:
|
212 |
-
history = history
|
213 |
-
sentiment = ""
|
214 |
-
emotion = ""
|
215 |
-
suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
|
216 |
-
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
|
217 |
-
elif len(history) > 0 and location != "" and btn_search:
|
218 |
-
try:
|
219 |
-
wellness_results = pd.DataFrame(get_all_places(query, location, 50000, GOOGLE_MAPS_API_KEY), columns=["Name", "Address", "Phone", "Website"])
|
220 |
-
sentiment = analyze_sentiment(message)
|
221 |
-
emotion = detect_emotion(message)
|
222 |
-
suggestions = provide_suggestions(emotion)
|
223 |
-
history, _ = chat(message, history)
|
224 |
-
except Exception as e:
|
225 |
-
wellness_results = pd.DataFrame([["Error: " + str(e), "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
|
226 |
else:
|
227 |
-
history = history
|
228 |
sentiment = ""
|
229 |
emotion = ""
|
230 |
suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
|
@@ -232,14 +173,13 @@ def gradio_interface(message, location, state, btn_chat, btn_search):
|
|
232 |
|
233 |
return history, sentiment, emotion, suggestions, wellness_results, history
|
234 |
|
235 |
-
|
236 |
fn=gradio_interface,
|
237 |
inputs=[
|
238 |
gr.Textbox(label="Enter your message", placeholder="How are you feeling today?"),
|
239 |
gr.Textbox(label="Enter your location (e.g., 'Hawaii, USA')", placeholder="Enter your location (optional)"),
|
240 |
gr.State(),
|
241 |
-
gr.Button("
|
242 |
-
gr.Button("Search")
|
243 |
],
|
244 |
outputs=[
|
245 |
gr.Chatbot(label="Chatbot Responses"),
|
@@ -252,6 +192,4 @@ iface = gr.Interface(
|
|
252 |
live=True,
|
253 |
title="Mental Health Chatbot with Wellness Professional Search",
|
254 |
description="This chatbot provides mental health support with sentiment analysis, emotion detection, suggestions, and a list of nearby wellness professionals. Interact with the chatbot first, then enter a location to search."
|
255 |
-
)
|
256 |
-
|
257 |
-
iface.launch(debug=True, share=True)
|
|
|
2 |
import nltk
|
3 |
import numpy as np
|
4 |
import tflearn
|
|
|
|
|
|
|
5 |
import torch
|
6 |
from nltk.tokenize import word_tokenize
|
7 |
from nltk.stem.lancaster import LancasterStemmer
|
|
|
14 |
from selenium.webdriver.chrome.options import Options
|
15 |
import chromedriver_autoinstaller
|
16 |
|
17 |
+
# Ensure NLTK resources are downloaded
|
18 |
nltk.download('punkt')
|
19 |
|
20 |
+
# Constants
|
21 |
GOOGLE_MAPS_API_KEY = os.environ.get("GOOGLE_API_KEY") # Get API key from environment variable
|
22 |
if not GOOGLE_MAPS_API_KEY:
|
23 |
raise ValueError("Error: GOOGLE_MAPS_API_KEY environment variable not set.")
|
|
|
26 |
places_details_url = "https://maps.googleapis.com/maps/api/place/details/json"
|
27 |
query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath"
|
28 |
|
29 |
+
# Chatbot
|
|
|
30 |
stemmer = LancasterStemmer()
|
31 |
|
32 |
try:
|
|
|
36 |
raise FileNotFoundError("Error: 'intents.json' file not found.")
|
37 |
|
38 |
try:
|
39 |
+
with open("data.pickle", "rb") as file:
|
40 |
+
words, labels, training, output = pickle.load(file)
|
41 |
except FileNotFoundError:
|
42 |
raise FileNotFoundError("Error: 'data.pickle' file not found.")
|
43 |
|
|
|
45 |
net = tflearn.fully_connected(net, 8)
|
46 |
net = tflearn.fully_connected(net, 8)
|
47 |
net = tflearn.fully_connected(net, len(output[0]), activation="softmax")
|
|
|
48 |
|
49 |
model = tflearn.DNN(net)
|
50 |
+
|
51 |
try:
|
52 |
model.load("MentalHealthChatBotmodel.tflearn")
|
53 |
except FileNotFoundError:
|
|
|
74 |
if tg['tag'] == tag:
|
75 |
responses = tg['responses']
|
76 |
response = random.choice(responses)
|
77 |
+
history.append((message, response))
|
|
|
|
|
78 |
except Exception as e:
|
79 |
+
response = "I'm sorry, I didn't understand that. Could you please rephrase?"
|
80 |
+
history.append((message, response))
|
81 |
return history, history
|
82 |
|
83 |
+
# Sentiment Analysis
|
84 |
tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
85 |
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
|
86 |
|
87 |
def analyze_sentiment(text):
|
88 |
try:
|
89 |
+
inputs = tokenizer(text, return_tensors="pt")
|
90 |
with torch.no_grad():
|
91 |
+
logits = model_sentiment(**inputs).logits
|
92 |
+
sentiment = ["Negative", "Neutral", "Positive"][torch.argmax(logits)]
|
|
|
93 |
return f"**Predicted Sentiment:** {sentiment}"
|
94 |
except Exception as e:
|
95 |
return f"Error analyzing sentiment: {str(e)}"
|
96 |
|
97 |
+
# Emotion Detection
|
98 |
def detect_emotion(text):
|
99 |
+
# Implement your own emotion detection logic
|
100 |
return "Emotion detection not implemented"
|
101 |
|
102 |
+
# Suggestion Generation
|
103 |
def provide_suggestions(emotion):
|
104 |
+
# Implement your own suggestion generation logic
|
105 |
return pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
|
106 |
|
107 |
+
# Google Places API Functions
|
108 |
def get_places_data(query, location, radius, api_key, next_page_token=None):
|
109 |
+
params = {"query": query, "location": location, "radius": radius, "key": api_key}
|
|
|
|
|
|
|
|
|
|
|
110 |
if next_page_token:
|
111 |
params["pagetoken"] = next_page_token
|
112 |
response = requests.get(url, params=params)
|
|
|
128 |
else:
|
129 |
return {}
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
def get_all_places(query, location, radius, api_key):
|
132 |
all_results = []
|
133 |
next_page_token = None
|
134 |
while True:
|
135 |
+
data = get_places_data(query, location, radius, api_key, next_page_token)
|
136 |
if data:
|
137 |
results = data.get('results', [])
|
138 |
for place in results:
|
|
|
150 |
break
|
151 |
return all_results
|
152 |
|
153 |
+
# Gradio Interface
|
154 |
+
def gradio_interface(message, location, state):
|
155 |
history = state or []
|
156 |
+
if message:
|
157 |
+
history, _ = chat(message, history)
|
158 |
+
sentiment = analyze_sentiment(message)
|
159 |
+
emotion = detect_emotion(message)
|
160 |
+
suggestions = provide_suggestions(emotion)
|
161 |
+
if location:
|
162 |
+
try:
|
163 |
+
wellness_results = pd.DataFrame(get_all_places(query, location, 50000, GOOGLE_MAPS_API_KEY), columns=["Name", "Address", "Phone", "Website"])
|
164 |
+
except Exception as e:
|
165 |
+
wellness_results = pd.DataFrame([["Error fetching data: " + str(e), "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
|
|
|
|
|
|
|
166 |
else:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
else:
|
|
|
169 |
sentiment = ""
|
170 |
emotion = ""
|
171 |
suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"])
|
|
|
173 |
|
174 |
return history, sentiment, emotion, suggestions, wellness_results, history
|
175 |
|
176 |
+
gr.Interface(
|
177 |
fn=gradio_interface,
|
178 |
inputs=[
|
179 |
gr.Textbox(label="Enter your message", placeholder="How are you feeling today?"),
|
180 |
gr.Textbox(label="Enter your location (e.g., 'Hawaii, USA')", placeholder="Enter your location (optional)"),
|
181 |
gr.State(),
|
182 |
+
gr.Button("Send")
|
|
|
183 |
],
|
184 |
outputs=[
|
185 |
gr.Chatbot(label="Chatbot Responses"),
|
|
|
192 |
live=True,
|
193 |
title="Mental Health Chatbot with Wellness Professional Search",
|
194 |
description="This chatbot provides mental health support with sentiment analysis, emotion detection, suggestions, and a list of nearby wellness professionals. Interact with the chatbot first, then enter a location to search."
|
195 |
+
).launch(debug=True, share=True)
|
|
|
|