import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import pipeline import requests import csv import time import re from bs4 import BeautifulSoup import pandas as pd import chromedriver_autoinstaller import os import nltk import numpy as np import torch import torch.nn as nn import torch.optim as optim import tflearn import tensorflow as tf import json import pickle import random # Ensure necessary NLTK resources are downloaded nltk.download('punkt') # Import LancasterStemmer from nltk.stem from nltk.stem import LancasterStemmer # Initialize the stemmer stemmer = LancasterStemmer() # Load intents.json try: with open("intents.json") as file: data = json.load(file) except FileNotFoundError: raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.") # Load preprocessed data from pickle try: with open("data.pickle", "rb") as f: words, labels, training, output = pickle.load(f) except FileNotFoundError: raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.") # Build the model structure net = tflearn.input_data(shape=[None, len(training[0])]) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, len(output[0]), activation="softmax") net = tflearn.regression(net) # Load the trained model model = tflearn.DNN(net) try: model.load("MentalHealthChatBotmodel.tflearn") except FileNotFoundError: raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.") # Function to process user input into a bag-of-words format def bag_of_words(s, words): bag = [0 for _ in range(len(words))] s_words = nltk.word_tokenize(s) s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words] for se in s_words: for i, w in enumerate(words): if w == se: bag[i] = 1 return np.array(bag) # Chat function def chat(message, history): history = history or [] message = message.lower() try: # Predict the tag results = model.predict([bag_of_words(message, words)]) results_index = np.argmax(results) tag = labels[results_index] # Match tag with intent and choose a random response for tg in data["intents"]: if tg['tag'] == tag: responses = tg['responses'] response = random.choice(responses) break else: response = "I'm sorry, I didn't understand that. Could you please rephrase?" except Exception as e: response = f"An error occurred: {str(e)}" history.append((message, response)) return history, history # Sentiment analysis tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") sentiment_pipeline = pipeline("sentiment-analysis") def predict_sentiment(text): result = sentiment_pipeline(text)[0] return result['label'] # Emotion detection tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") emotion_pipeline = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion) def predict_emotion(text): result = emotion_pipeline(text)[0] return result['label'] # Fetching nearby health professionals google_places_url = "https://maps.googleapis.com/maps/api/place/textsearch/json" google_geocoding_url = "https://maps.googleapis.com/maps/api/geocode/json" def get_places_data(query, location, radius, api_key): params = { "query": query, "location": location, "radius": radius, "key": api_key } response = requests.get(google_places_url, params=params) return response.json() def get_place_details(place_id, api_key): details_url = f"https://maps.googleapis.com/maps/api/place/details/json?place_id={place_id}&fields=name,rating,formatted_phone_number&key={api_key}" response = requests.get(details_url) return response.json() def fetch_nearby_health_professionals(location): api_key = "YOUR_GOOGLE_API_KEY" # Replace with your actual Google API key query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath" radius = 50000 # 50 km radius response = get_places_data(query, location, radius, api_key) results = response.get('results', []) data = [] for place in results: place_id = place['place_id'] place_details = get_place_details(place_id, api_key) name = place_details.get('result', {}).get('name', 'N/A') rating = place_details.get('result', {}).get('rating', 'N/A') phone_number = place_details.get('result', {}).get('formatted_phone_number', 'N/A') data.append([name, rating, phone_number]) return pd.DataFrame(data, columns=['Name', 'Rating', 'Phone Number']) # Save results to CSV def save_to_csv(data, filename): data.to_csv(filename, index=False) # Gradio interface with gr.Blocks() as demo: gr.Markdown("# Mental Health Assistant") # User input for text (emotion detection) user_input_emotion = gr.Textbox(lines=1, label="How are you feeling today?") submit_emotion = gr.Button("Submit") # Model prediction for emotion detection def predict_emotion(text): result = emotion_pipeline(text) return result[0]['label'] # Show suggestions based on the detected emotion def show_suggestions(emotion): if emotion == 'joy': return "You're feeling happy! Keep up the great mood!" elif emotion == 'anger': return "You're feeling angry. It's okay to feel this way. Let's try to calm down." elif emotion == 'fear': return "You're feeling fearful. Take a moment to breathe and relax." elif emotion == 'sadness': return "You're feeling sad. It's okay to take a break." elif emotion == 'surprise': return "You're feeling surprised. It's okay to feel neutral!" emotion_output = gr.Textbox(label="Emotion Detected") submit_emotion.click(predict_emotion, inputs=user_input_emotion, outputs=emotion_output) # Button for summary def show_summary(emotion): return f"Emotion Detected: {emotion}" summary_button = gr.Button("Show Summary") summary_output = gr.Textbox(label="Summary") summary_button.click(show_summary, inputs=emotion_output, outputs=summary_output) # Chatbot functionality chatbot = gr.Chatbot(label="Chat") message_input = gr.Textbox(lines=1, label="Message") submit_chat = gr.Button("Send") def chat(message, history): history = history or [] message = message.lower() try: # Predict the tag results = model.predict([bag_of_words(message, words)]) results_index = np.argmax(results) tag = labels[results_index] # Match tag with intent and choose a random response for tg in data["intents"]: if tg['tag'] == tag: responses = tg['responses'] response = random.choice(responses) break else: response = "I'm sorry, I didn't understand that. Could you please rephrase?" except Exception as e: response = f"An error occurred: {str(e)}" history.append((message, response)) return history, history submit_chat.click(chat, inputs=[message_input, gr.State()], outputs=[chatbot, gr.State()]) # Location input for fetching nearby health professionals location_input = gr.Textbox(lines=1, label="Enter your location (plain English):") submit_location = gr.Button("Find Nearby Health Professionals") # Fetch and display nearby health professionals def fetch_nearby_health_professionals(location): df = fetch_nearby_health_professionals(location) return df nearby_health_professionals_table = gr.Dataframe(headers=["Name", "Rating", "Phone Number"]) submit_location.click(fetch_nearby_health_professionals, inputs=location_input, outputs=nearby_health_professionals_table) # User input for text (sentiment analysis) user_input_sentiment = gr.Textbox(lines=1, label="Enter text to analyze sentiment:") submit_sentiment = gr.Button("Submit") # Prediction button for sentiment analysis def predict_sentiment(text): result = sentiment_pipeline(text) return result[0]['label'] sentiment_output = gr.Textbox(label="Predicted Sentiment") submit_sentiment.click(predict_sentiment, inputs=user_input_sentiment, outputs=sentiment_output) # Button to fetch wellness professionals data fetch_button = gr.Button("Fetch Wellness Professionals Data") data_output = gr.Dataframe(headers=["Name", "Rating", "Phone Number"]) def fetch_data(): df = fetch_nearby_health_professionals("Hawaii") return df fetch_button.click(fetch_data, inputs=None, outputs=data_output) # Launch Gradio interface demo.launch()