import gradio as gr from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import nltk import numpy as np import tflearn import tensorflow as tf import random import json import pickle from nltk.tokenize import word_tokenize from nltk.stem.lancaster import LancasterStemmer import requests import csv import time import re from bs4 import BeautifulSoup import pandas as pd from selenium import webdriver from selenium.webdriver.chrome.options import Options import chromedriver_autoinstaller import os # Ensure necessary NLTK resources are downloaded nltk.download('punkt') # Initialize the stemmer stemmer = LancasterStemmer() # Load intents.json try: with open("intents.json") as file: data = json.load(file) except FileNotFoundError: raise FileNotFoundError("Error: 'intents.json' file not found. Ensure it exists in the current directory.") # Load preprocessed data from pickle try: with open("data.pickle", "rb") as f: words, labels, training, output = pickle.load(f) except FileNotFoundError: raise FileNotFoundError("Error: 'data.pickle' file not found. Ensure it exists and matches the model.") # Build the model structure net = tflearn.input_data(shape=[None, len(training[0])]) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, len(output[0]), activation="softmax") net = tflearn.regression(net) # Create a new model instance model = tflearn.DNN(net) # Create a checkpoint object checkpoint = tf.train.Checkpoint(model=model) # Load the model weights checkpoint.restore("MentalHealthChatBotmodel.tflearn.meta") # Function to process user input into a bag-of-words format def bag_of_words(s, words): bag = [0 for _ in range(len(words))] s_words = word_tokenize(s) s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words] for se in s_words: for i, w in enumerate(words): if w == se: bag[i] = 1 return np.array(bag) # Chat function def chat(message, history): history = history or [] message = message.lower() try: # Predict the tag results = model.predict([bag_of_words(message, words)]) results_index = np.argmax(results) tag = labels[results_index] # Match tag with intent and choose a random response for tg in data["intents"]: if tg['tag'] == tag: responses = tg['responses'] response = random.choice(responses) break else: response = "I'm sorry, I didn't understand that. Could you please rephrase?" except Exception as e: response = f"An error occurred: {str(e)}" history.append((message, response)) return history, history # Function to send a request to Google Places API and fetch places data def get_places_data(query, location, radius, api_key, next_page_token=None): params = { "query": query, "location": location, "radius": radius, "key": api_key } if next_page_token: params["pagetoken"] = next_page_token response = requests.get(url, params=params) if response.status_code == 200: return response.json() else: return None # Function to fetch detailed information for a specific place using its place_id def get_place_details(place_id, api_key): details_url = places_details_url params = { "place_id": place_id, "key": api_key } response = requests.get(details_url, params=params) if response.status_code == 200: details_data = response.json().get("result", {}) return { "opening_hours": details_data.get("opening_hours", {}).get("weekday_text", "Not available"), "reviews": details_data.get("reviews", "Not available"), "phone_number": details_data.get("formatted_phone_number", "Not available"), "website": details_data.get("website", "Not available") } else: return {} # Scrape website URL from Google Maps results (using Selenium) def scrape_website_from_google_maps(place_name): chrome_options = Options() chrome_options.add_argument("--headless") chrome_options.add_argument("--no-sandbox") chrome_options.add_argument("--disable-dev-shm-usage") driver = webdriver.Chrome(options=chrome_options) search_url = f"https://www.google.com/maps/search/{place_name.replace(' ', '+')}" driver.get(search_url) time.sleep(5) try: website_element = driver.find_element_by_xpath('//a[contains(@aria-label, "Visit") and contains(@aria-label, "website")]') website_url = website_element.get_attribute('href') except: website_url = "Not available" driver.quit() return website_url # Scraping the website to extract phone number or email def scrape_website_for_contact_info(website): phone_number = "Not available" email = "Not available" try: response = requests.get(website, timeout=5) soup = BeautifulSoup(response.content, 'html.parser') phone_match = re.search(r'\(?\+?[0-9]*\)?[0-9_\- \(\)]*', soup.get_text()) if phone_match: phone_number = phone_match.group() email_match = re.search(r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}', soup.get_text()) if email_match: email = email_match.group() except Exception as e: print(f"Error scraping website {website}: {e}") return phone_number, email # Function to fetch all places data including pagination def get_all_places(query, location, radius, api_key): all_results = [] next_page_token = None while True: data = get_places_data(query, location, radius, api_key, next_page_token) if data: results = data.get('results', []) if not results: break for place in results: place_id = place.get("place_id") name = place.get("name") address = place.get("formatted_address") rating = place.get("rating", "Not available") business_status = place.get("business_status", "Not available") user_ratings_total = place.get("user_ratings_total", "Not available") website = place.get("website", "Not available") types = ", ".join(place.get("types", [])) location = place.get("geometry", {}).get("location", {}) latitude = location.get("lat", "Not available") longitude = location.get("lng", "Not available") details = get_place_details(place_id, api_key) phone_number = details.get("phone_number", "Not available") if phone_number == "Not available" and website != "Not available": phone_number, email = scrape_website_for_contact_info(website) else: email = "Not available" if website == "Not available": website = scrape_website_from_google_maps(name) all_results.append([name, address, phone_number, rating, business_status, user_ratings_total, website, types, latitude, longitude, details.get("opening_hours", "Not available"), details.get("reviews", "Not available"), email]) next_page_token = data.get('next_page_token') if not next_page_token: break time.sleep(2) else: break return all_results # Function to save results to CSV file def save_to_csv(data, filename): with open(filename, mode='w', newline='', encoding='utf-8') as file: writer = csv.writer(file) writer.writerow(["Name", "Address", "Phone", "Rating", "Business Status", "User Ratings Total", "Website", "Types", "Latitude", "Longitude", "Opening Hours", "Reviews", "Email"]) writer.writerows(data) print(f"Data saved to {filename}") # Main function to execute script def main(): google_places_data = get_all_places(query, location, radius, api_key) if google_places_data: save_to_csv(google_places_data, "wellness_professionals_hawaii.csv") else: print("No data found.") # Gradio UI setup with gr.Blocks() as demo: # Load pre-trained model and tokenizer @gr.cache_resource def load_model(): tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") return tokenizer, model tokenizer, model = load_model() # Display header gr.Markdown("# Emotion Detection and Well-Being Suggestions") # User input for text (emotion detection) user_input = gr.Textbox(lines=1, label="How are you feeling today?") emotion_output = gr.Textbox(label="Emotion Detected") # Model prediction def predict_emotion(text): pipe = pipeline("text-classification", model=model, tokenizer=tokenizer) result = pipe(text) emotion = result[0]['label'] return emotion user_input.change(predict_emotion, inputs=user_input, outputs=emotion_output) # Chatbot functionality chatbot = gr.Chatbot(label="Chat") message_input = gr.Textbox(lines=1, label="Message") history_state = gr.State([]) def chat(message, history): history = history or [] message = message.lower() try: # Predict the tag results = model.predict([bag_of_words(message, words)]) results_index = np.argmax(results) tag = labels[results_index] # Match tag with intent and choose a random response for tg in data["intents"]: if tg['tag'] == tag: responses = tg['responses'] response = random.choice(responses) break else: response = "I'm sorry, I didn't understand that. Could you please rephrase?" except Exception as e: response = f"An error occurred: {str(e)}" history.append((message, response)) return history, history message_input.submit(chat, inputs=[message_input, history_state], outputs=[chatbot, history_state]) # Button to fetch wellness professionals data fetch_button = gr.Button("Fetch Wellness Professionals Data") data_output = gr.File(label="Download Data") def fetch_data(): all_results = get_all_places(query, location, radius, api_key) if all_results: df = pd.DataFrame(all_results, columns=["Name", "Address", "Phone", "Rating", "Business Status", "User Ratings Total", "Website", "Types", "Latitude", "Longitude", "Opening Hours", "Reviews", "Email"]) csv_file = df.to_csv(index=False) return csv_file else: return "No data found." fetch_button.click(fetch_data, inputs=None, outputs=data_output) # Launch Gradio interface demo.launch()