import gradio as gr import nltk import numpy as np import tflearn import torch from nltk.tokenize import word_tokenize from nltk.stem.lancaster import LancasterStemmer from transformers import AutoTokenizer, AutoModelForSequenceClassification import requests import pandas as pd import os import json import pickle from bs4 import BeautifulSoup from selenium import webdriver from selenium.webdriver.chrome.options import Options import chromedriver_autoinstaller # Ensure NLTK resources are downloaded nltk.download('punkt') # Constants GOOGLE_MAPS_API_KEY = os.environ.get("GOOGLE_API_KEY") # Get API key from environment variable if not GOOGLE_MAPS_API_KEY: raise ValueError("Error: GOOGLE_MAPS_API_KEY environment variable not set.") url = "https://maps.googleapis.com/maps/api/place/textsearch/json" places_details_url = "https://maps.googleapis.com/maps/api/place/details/json" query = "therapist OR counselor OR mental health professional OR marriage and family therapist OR psychotherapist OR psychiatrist OR psychologist OR nutritionist OR wellness doctor OR holistic practitioner OR integrative medicine OR chiropractor OR naturopath" # Chatbot stemmer = LancasterStemmer() try: with open("intents.json") as file: data = json.load(file) except FileNotFoundError: raise FileNotFoundError("Error: 'intents.json' file not found.") try: with open("data.pickle", "rb") as file: words, labels, training, output = pickle.load(file) except FileNotFoundError: raise FileNotFoundError("Error: 'data.pickle' file not found.") net = tflearn.input_data(shape=[None, len(training[0])]) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, len(output[0]), activation="softmax") model = tflearn.DNN(net) try: model.load("MentalHealthChatBotmodel.tflearn") except FileNotFoundError: raise FileNotFoundError("Error: Trained model file 'MentalHealthChatBotmodel.tflearn' not found.") def bag_of_words(s, words): bag = [0 for _ in range(len(words))] s_words = word_tokenize(s) s_words = [stemmer.stem(word.lower()) for word in s_words if word.lower() in words] for se in s_words: for i, w in enumerate(words): if w == se: bag[i] = 1 return np.array(bag) def chat(message, history): history = history or [] message = message.lower() try: results = model.predict([bag_of_words(message, words)]) results_index = np.argmax(results) tag = labels[results_index] for tg in data["intents"]: if tg['tag'] == tag: responses = tg['responses'] response = random.choice(responses) history.append((message, response)) except Exception as e: response = "I'm sorry, I didn't understand that. Could you please rephrase?" history.append((message, response)) return history, history # Sentiment Analysis tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") def analyze_sentiment(text): try: inputs = tokenizer(text, return_tensors="pt") with torch.no_grad(): logits = model_sentiment(**inputs).logits sentiment = ["Negative", "Neutral", "Positive"][torch.argmax(logits)] return f"**Predicted Sentiment:** {sentiment}" except Exception as e: return f"Error analyzing sentiment: {str(e)}" # Emotion Detection def detect_emotion(text): # Implement your own emotion detection logic return "Emotion detection not implemented" # Suggestion Generation def provide_suggestions(emotion): # Implement your own suggestion generation logic return pd.DataFrame(columns=["Subject", "Article URL", "Video URL"]) # Google Places API Functions def get_places_data(query, location, radius, api_key, next_page_token=None): params = {"query": query, "location": location, "radius": radius, "key": api_key} if next_page_token: params["pagetoken"] = next_page_token response = requests.get(url, params=params) if response.status_code == 200: return response.json() else: print(f"Error: {response.status_code} - {response.text}") return None def get_place_details(place_id, api_key): params = {"place_id": place_id, "key": api_key} response = requests.get(places_details_url, params=params) if response.status_code == 200: details_data = response.json().get("result", {}) return { "phone_number": details_data.get("formatted_phone_number", "Not available"), "website": details_data.get("website", "Not available") } else: return {} def get_all_places(query, location, radius, api_key): all_results = [] next_page_token = None while True: data = get_places_data(query, location, radius, api_key, next_page_token) if data: results = data.get('results', []) for place in results: place_id = place.get("place_id") name = place.get("name") address = place.get("formatted_address") details = get_place_details(place_id, api_key) phone_number = details.get("phone_number", "Not available") website = details.get("website", "Not available") all_results.append([name, address, phone_number, website]) next_page_token = data.get('next_page_token') if not next_page_token: break else: break return all_results # Gradio Interface def gradio_interface(message, location, state): history = state or [] if message: history, _ = chat(message, history) sentiment = analyze_sentiment(message) emotion = detect_emotion(message) suggestions = provide_suggestions(emotion) if location: try: wellness_results = pd.DataFrame(get_all_places(query, location, 50000, GOOGLE_MAPS_API_KEY), columns=["Name", "Address", "Phone", "Website"]) except Exception as e: wellness_results = pd.DataFrame([["Error fetching data: " + str(e), "", "", ""]], columns=["Name", "Address", "Phone", "Website"]) else: wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"]) else: sentiment = "" emotion = "" suggestions = pd.DataFrame(columns=["Subject", "Article URL", "Video URL"]) wellness_results = pd.DataFrame([["", "", "", ""]], columns=["Name", "Address", "Phone", "Website"]) return history, sentiment, emotion, suggestions, wellness_results, history gr.Interface( fn=gradio_interface, inputs=[ gr.Textbox(label="Enter your message", placeholder="How are you feeling today?"), gr.Textbox(label="Enter your location (e.g., 'Hawaii, USA')", placeholder="Enter your location (optional)"), gr.State(), gr.Button("Send") ], outputs=[ gr.Chatbot(label="Chatbot Responses"), gr.Textbox(label="Sentiment Analysis"), gr.Textbox(label="Emotion Detected"), gr.DataFrame(label="Suggested Articles & Videos"), gr.DataFrame(label="Nearby Wellness Professionals"), gr.State() ], live=True, title="Mental Health Chatbot with Wellness Professional Search", description="This chatbot provides mental health support with sentiment analysis, emotion detection, suggestions, and a list of nearby wellness professionals. Interact with the chatbot first, then enter a location to search." ).launch(debug=True, share=True)