import os import gradio as gr import nltk import numpy as np import tflearn import random import json import pickle from nltk.tokenize import word_tokenize from nltk.stem.lancaster import LancasterStemmer from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline import googlemaps import folium import torch # Disable GPU usage for TensorFlow os.environ['CUDA_VISIBLE_DEVICES'] = '-1' os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Download necessary NLTK resources nltk.download("punkt") # Initialize Lancaster Stemmer stemmer = LancasterStemmer() # Load chatbot training data and intents with open("intents.json") as file: intents_data = json.load(file) with open("data.pickle", "rb") as f: words, labels, training, output = pickle.load(f) # Build the chatbot's neural network model net = tflearn.input_data(shape=[None, len(training[0])]) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, 8) net = tflearn.fully_connected(net, len(output[0]), activation="softmax") net = tflearn.regression(net) chatbot_model = tflearn.DNN(net) chatbot_model.load("MentalHealthChatBotmodel.tflearn") # Hugging Face models for sentiment and emotion detection tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment") tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base") model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base") # Google Maps API Client gmaps = googlemaps.Client(key=os.getenv('GOOGLE_API_KEY')) # Function to process text input into a bag-of-words format def bag_of_words(s, words): bag = [0] * len(words) s_words = word_tokenize(s) s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()] for se in s_words: for i, w in enumerate(words): if w == se: bag[i] = 1 return np.array(bag) # Chatbot Logic def chatbot(message, history): """Generate chatbot response and append to history.""" history = history or [] try: result = chatbot_model.predict([bag_of_words(message, words)]) tag = labels[np.argmax(result)] response = "I'm not sure how to respond to that. 🤔" for intent in intents_data["intents"]: if intent["tag"] == tag: response = random.choice(intent["responses"]) break except Exception as e: response = f"Error: {str(e)}" history.append((message, response)) return history, response # Sentiment Analysis def analyze_sentiment(user_input): inputs = tokenizer_sentiment(user_input, return_tensors="pt") with torch.no_grad(): outputs = model_sentiment(**inputs) sentiment_class = torch.argmax(outputs.logits, dim=1).item() sentiment_map = ["Negative 😔", "Neutral 😐", "Positive 😊"] return sentiment_map[sentiment_class] # Emotion Detection def detect_emotion(user_input): pipe = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion) result = pipe(user_input) emotion = result[0]['label'] return emotion # Generate Suggestions def generate_suggestions(emotion): """Return suggestions aligned with the detected emotion.""" suggestions = { "joy": [ ["Relaxation Techniques", 'Visit'], ["Dealing with Stress", 'Visit'], ["Emotional Wellness Toolkit", 'Visit'], ["Relaxation Videos", 'Watch'] ], "anger": [ ["Emotional Wellness Toolkit", 'Visit'], ["Stress Management Tips", 'Visit'], ["Dealing with Anger", 'Visit'], ["Relaxation Videos", 'Watch'] ], "fear": [ ["Mindfulness Practices", 'Visit'], ["Coping with Anxiety", 'Visit'], ["Relaxation Videos", 'Watch'] ], "sadness": [ ["Emotional Wellness Toolkit", 'Visit'], ["Dealing with Anxiety", 'Visit'], ["Relaxation Videos", 'Watch'] ], "surprise": [ ["Managing Stress", 'Visit'], ["Coping Strategies", 'Visit'], ["Relaxation Videos", 'Watch'] ], } return suggestions.get(emotion.lower(), [["No suggestions available", ""]]) # Get Health Professionals and Generate Map def get_health_professionals_and_map(location, query): """Search professionals and return details + map as HTML.""" try: geo_location = gmaps.geocode(location) if geo_location: lat, lng = geo_location[0]["geometry"]["location"].values() places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"] map_ = folium.Map(location=(lat, lng), zoom_start=13) professionals = [] for place in places_result: professionals.append(f"{place['name']} - {place.get('vicinity', '')}") folium.Marker([place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]], popup=place["name"]).add_to(map_) return professionals, map_._repr_html_() return ["No professionals found"], "" except Exception as e: return [f"Error: {e}"], "" # Main Application Logic def app_function(user_input, location, query, history): chatbot_history, response = chatbot(user_input, history) emotion = detect_emotion(user_input) suggestions = generate_suggestions(emotion) professionals, map_html = get_health_professionals_and_map(location, query) return chatbot_history, emotion, suggestions, professionals, map_html # Enhanced CSS for Custom UI custom_css = """ body { background: linear-gradient(135deg, #000000, #ff5722); color: white; font-family: 'Roboto', sans-serif; } textarea, input[type="text"], .gr-chatbot { background: #000000 !important; color: white !important; border: 2px solid #ff5722 !important; border-radius: 5px; padding: 12px !important; } .gr-dataframe { background: #000000 !important; color: white !important; height: 350px !important; border: 2px solid #ff5722 !important; overflow-y: auto; } h1, h2, h3 { color: white; text-align: center; font-weight: bold; } """ # Gradio Application with gr.Blocks(css=custom_css) as app: gr.Markdown("

🌟 Well-Being Companion

") gr.Markdown("

Empowering Your Well-Being Journey 💚

") with gr.Row(): user_input = gr.Textbox(label="Your Message", placeholder="Enter your message...") location = gr.Textbox(label="Your Location", placeholder="Enter your location...") query = gr.Textbox(label="Query (e.g., therapists)", placeholder="Search...") chatbot_history = gr.Chatbot(label="Chat History") emotion_box = gr.Textbox(label="Detected Emotion") suggestions_table = gr.DataFrame(headers=["Suggestion", "Link"]) map_box = gr.HTML(label="Map of Health Professionals") professionals_list = gr.Textbox(label="Health Professionals Nearby", lines=5) submit_button = gr.Button("Submit") submit_button.click( app_function, inputs=[user_input, location, query, chatbot_history], outputs=[chatbot_history, emotion_box, suggestions_table, professionals_list, map_box], ) app.launch()