File size: 16,280 Bytes
da0d067
 
 
 
09396fc
 
 
da0d067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0539406
da0d067
f2fc69b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da0d067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09396fc
 
 
 
 
 
 
 
 
 
 
 
 
 
da0d067
 
 
 
 
 
 
0539406
 
 
da0d067
 
 
 
09396fc
 
da0d067
0539406
 
 
 
09396fc
 
0539406
 
 
 
 
da0d067
0539406
 
da0d067
 
 
 
 
 
 
 
 
 
 
0539406
 
 
da0d067
 
0539406
 
da0d067
 
 
 
 
 
 
 
 
 
 
 
 
09396fc
da0d067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0539406
da0d067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0539406
 
 
 
 
 
da0d067
0539406
 
da0d067
 
 
 
 
 
 
09396fc
da0d067
 
 
 
 
 
 
 
 
 
 
 
 
0539406
da0d067
0539406
 
da0d067
 
 
 
 
 
 
 
 
 
09396fc
da0d067
 
09396fc
da0d067
 
 
 
 
 
0539406
da0d067
0539406
 
 
 
 
da0d067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0539406
 
 
da0d067
 
0539406
 
 
 
da0d067
 
 
 
 
 
09396fc
da0d067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0539406
da0d067
0539406
da0d067
 
 
 
0539406
da0d067
0539406
da0d067
 
 
 
0539406
da0d067
 
 
 
 
 
 
 
0539406
da0d067
f2fc69b
 
 
 
 
 
 
 
 
da0d067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0539406
da0d067
 
 
 
0539406
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
import os
import gradio as gr
import nltk
import numpy as np
import tensorflow as tf
from tensorflow.keras.models import Sequential, load_model
from tensorflow.keras.layers import Dense
import random
import json
import pickle
from nltk.tokenize import word_tokenize
from nltk.stem.lancaster import LancasterStemmer
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import googlemaps
import folium
import torch
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
import logging

# --- Groq LLM Integration ---
from groq import Groq

# Load Groq API key from Hugging Face secret
GROQ_API_KEY = os.environ.get("groq")
client = Groq(api_key=GROQ_API_KEY)

def ask_groq_llm(user_message):
    response = client.chat.completions.create(
        model="llama-3.3-70b-versatile",
        messages=[
            {"role": "user", "content": user_message}
        ]
    )
    return response.choices[0].message.content

# Suppress TensorFlow warnings
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"

# Download necessary NLTK resources
nltk.download("punkt")
stemmer = LancasterStemmer()

# Load intents and chatbot training data
with open("intents.json") as file:
    intents_data = json.load(file)

with open("data.pickle", "rb") as f:
    words, labels, training, output = pickle.load(f)

# Build the chatbot model using TensorFlow 2.x Keras
chatbot_model = Sequential([
    Dense(8, input_shape=(len(training[0]),), activation='relu'),
    Dense(8, activation='relu'),
    Dense(len(output[0]), activation='softmax')
])
chatbot_model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Load the saved model or train if not present
if os.path.exists("MentalHealthChatBotmodel.h5"):
    chatbot_model = load_model("MentalHealthChatBotmodel.h5")
else:
    chatbot_model.fit(training, output, epochs=1000, batch_size=8, verbose=1)
    chatbot_model.save("MentalHealthChatBotmodel.h5")

# Hugging Face sentiment and emotion models
tokenizer_sentiment = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
model_sentiment = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
tokenizer_emotion = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
model_emotion = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")

# Initialize emotion pipeline once
emotion_pipeline = pipeline("text-classification", model=model_emotion, tokenizer=tokenizer_emotion)

# Google Maps API Client
gmaps = googlemaps.Client(key=os.getenv("GOOGLE_API_KEY"))

# Load the disease dataset
df_train = pd.read_csv("Training.csv")
df_test = pd.read_csv("Testing.csv")

# Label encoder for consistent train/test encoding
label_encoder = LabelEncoder()

def prepare_data(df, is_train=True):
    X = df.iloc[:, :-1]
    y = df.iloc[:, -1]
    if is_train:
        y_encoded = label_encoder.fit_transform(y)
    else:
        y_encoded = label_encoder.transform(y)
    return X, y_encoded

X_train, y_train = prepare_data(df_train, is_train=True)
X_test, y_test = prepare_data(df_test, is_train=False)

# Define the models
models = {
    "Decision Tree": DecisionTreeClassifier(),
    "Random Forest": RandomForestClassifier(),
    "Naive Bayes": GaussianNB()
}

# Train and evaluate models
trained_models = {}
for model_name, model_obj in models.items():
    model_obj.fit(X_train, y_train)
    y_pred = model_obj.predict(X_test)
    acc = accuracy_score(y_test, y_pred)
    trained_models[model_name] = {'model': model_obj, 'accuracy': acc}

# --- Helper Functions for Chatbot ---

def bag_of_words(s, words):
    bag = [0] * len(words)
    s_words = word_tokenize(s)
    s_words = [stemmer.stem(word.lower()) for word in s_words if word.isalnum()]
    for se in s_words:
        for i, w in enumerate(words):
            if w == se:
                bag[i] = 1
    return np.array(bag)

def generate_chatbot_response(message, history):
    history = history or []
    try:
        result = chatbot_model.predict(np.array([bag_of_words(message, words)]), verbose=0)
        tag = labels[np.argmax(result)]
        response = "I'm sorry, I didn't understand that. πŸ€”"
        for intent in intents_data["intents"]:
            if intent["tag"] == tag:
                response = random.choice(intent["responses"])
                break
    except Exception as e:
        response = f"Error: {e}"
    history.append((message, response))
    return history, response

def analyze_sentiment(user_input):
    inputs = tokenizer_sentiment(user_input, return_tensors="pt")
    with torch.no_grad():
        outputs = model_sentiment(**inputs)
    sentiment_class = torch.argmax(outputs.logits, dim=1).item()
    sentiment_map = ["Negative πŸ˜”", "Neutral 😐", "Positive 😊"]
    return f"Sentiment: {sentiment_map[sentiment_class]}"

def detect_emotion(user_input):
    result = emotion_pipeline(user_input)
    emotion = result[0]["label"].lower().strip()
    emotion_map = {
        "joy": "Joy 😊",
        "anger": "Anger 😠",
        "sadness": "Sadness 😒",
        "fear": "Fear 😨",
        "surprise": "Surprise 😲",
        "neutral": "Neutral 😐",
    }
    return emotion_map.get(emotion, "Unknown πŸ€”"), emotion

def generate_suggestions(emotion):
    emotion_key = emotion.lower()
    suggestions = {
        "joy": [
            ("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
            ("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
            ("Relaxation Video", "https://youtu.be/yGKKz185M5o"),
        ],
        "anger": [
            ("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
            ("Stress Management Tips", "https://www.health.harvard.edu/health-a-to-z"),
            ("Dealing with Anger", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Relaxation Video", "https://youtu.be/MIc299Flibs"),
        ],
        "fear": [
            ("Mindfulness Practices", "https://www.helpguide.org/mental-health/meditation/mindful-breathing-meditation"),
            ("Coping with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
            ("Relaxation Video", "https://youtu.be/yGKKz185M5o"),
        ],
        "sadness": [
            ("Emotional Wellness Toolkit", "https://www.nih.gov/health-information/emotional-wellness-toolkit"),
            ("Dealing with Anxiety", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Relaxation Video", "https://youtu.be/-e-4Kx5px_I"),
        ],
        "surprise": [
            ("Managing Stress", "https://www.health.harvard.edu/health-a-to-z"),
            ("Coping Strategies", "https://www.helpguide.org/mental-health/anxiety/tips-for-dealing-with-anxiety"),
            ("Relaxation Video", "https://youtu.be/m1vaUGtyo-A"),
        ],
    }

    formatted_suggestions = [
        "### Suggestions",
        f"Since you’re feeling {emotion}, you might find these links particularly helpful. Don’t hesitate to explore:",
        "| Title | Link |",
        "|-------|------|"
    ]
    formatted_suggestions += [
        f"| {title} | [{link}]({link}) |"
        for title, link in suggestions.get(emotion_key, [("No specific suggestions available.", "#")])
    ]

    return "\n".join(formatted_suggestions)

def get_health_professionals_and_map(location, query):
    try:
        if not location or not query:
            return [], ""
        geo_location = gmaps.geocode(location)
        if geo_location:
            lat, lng = geo_location[0]["geometry"]["location"].values()
            places_result = gmaps.places_nearby(location=(lat, lng), radius=10000, keyword=query)["results"]
            professionals = []
            map_ = folium.Map(location=(lat, lng), zoom_start=13)
            for place in places_result:
                professionals.append([place['name'], place.get('vicinity', 'No address provided')])
                folium.Marker(
                    location=[place["geometry"]["location"]["lat"], place["geometry"]["location"]["lng"]],
                    popup=f"{place['name']}"
                ).add_to(map_)
            return professionals, map_._repr_html_()
        return [], ""
    except Exception as e:
        logging.error(f"Error fetching health professionals: {e}")
        return [], ""

def app_function_chatbot(user_input, location, query, history):
    chatbot_history, _ = generate_chatbot_response(user_input, history)
    sentiment_result = analyze_sentiment(user_input)
    emotion_result, cleaned_emotion = detect_emotion(user_input)
    suggestions = generate_suggestions(cleaned_emotion)
    professionals, map_html = get_health_professionals_and_map(location, query)
    return chatbot_history, sentiment_result, emotion_result, suggestions, professionals, map_html

def predict_disease(symptoms):
    valid_symptoms = [s for s in symptoms if s is not None]
    if len(valid_symptoms) < 3:
        return "Please select at least 3 symptoms for a better prediction."
    input_test = np.zeros(len(X_train.columns))
    for symptom in valid_symptoms:
        if symptom in X_train.columns:
            input_test[X_train.columns.get_loc(symptom)] = 1
    predictions = {}
    for model_name, info in trained_models.items():
        prediction = info['model'].predict([input_test])[0]
        predicted_disease = label_encoder.inverse_transform([prediction])[0]
        predictions[model_name] = predicted_disease
    markdown_output = [
        "### Predicted Diseases",
        "| Model | Predicted Disease |",
        "|-------|------------------|"
    ]
    for model_name, disease in predictions.items():
        markdown_output.append(f"| {model_name} | {disease} |")
    return "\n".join(markdown_output)

welcome_message = """
<style>
    @keyframes fadeIn {
        0% { opacity: 0; }
        100% { opacity: 1; }
    }
    #welcome-message {
        font-size: 2em;
        font-weight: bold;
        text-align: center;
        animation: fadeIn 3s ease-in-out;
        margin-bottom: 20px;
    }
    .info-graphic {
        display: flex;
        justify-content: center;
        align-items: center;
        margin: 20px 0;
    }
    .info-graphic img {
        width: 150px;
        height: auto;
        margin: 0 10px;
    }
    h1 {
        text-align: center;
        font-size: 3em;
        color: #004d40;
        margin-bottom: 20px;
    }
</style>
<div id="welcome-message">Welcome to the Well-Being Companion!</div>
"""

with gr.Blocks(theme="shivi/calm_seafoam") as app:
    gr.HTML(welcome_message)
    with gr.Tab("Well-Being Chatbot"):
        gr.HTML("""
        <h1 style="color: #388e3c; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 3.5em; margin-bottom: 0;">
            🌼 Well-Being Companion 🌼
        </h1>
        <p style="color: #4caf50; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 1.5em; margin-top: 0;">
            Your Trustworthy Guide to Emotional Wellness and Health
        </p>
        <h2 style="color: #2e7d32; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 1.2em;">
            🌈 Emotional Support | πŸ§˜πŸ»β€β™€οΈ Mindfulness | πŸ₯— Nutrition | πŸ‹οΈ Physical Health | πŸ’€ Sleep Hygiene
        </h2>
        <ul style="text-align: center; color: #2e7d32;">
            <li>πŸ‘‰ Enter your messages in the input box to chat with our well-being companion.</li>
            <li>πŸ‘‰ Share your current location to find nearby health professionals.</li>
            <li>πŸ‘‰ Receive emotional support suggestions based on your chat.</li>
        </ul>
        """)
        gr.HTML("""
        <div class="info-graphic">
            <img src="https://i.imgur.com/3ixjqBf.png" alt="Wellness Image 1">
            <img src="https://i.imgur.com/Nvljr1A.png" alt="Wellness Image 2">
            <img src="https://i.imgur.com/hcYAUJ3.png" alt="Wellness Image 3">
        </div>
        """)
        with gr.Row():
            user_input = gr.Textbox(label="Please Enter Your Message Here", placeholder="Type your message here...", max_lines=3)
            location = gr.Textbox(label="Please Enter Your Current Location", placeholder="E.g., Honolulu", max_lines=1)
            query = gr.Textbox(label="Search Health Professionals Nearby", placeholder="E.g., Health Professionals", max_lines=1)
        with gr.Row():
            submit_chatbot = gr.Button(value="Submit Your Message", variant="primary")
            clear_chatbot = gr.Button(value="Clear", variant="secondary")
        chatbot = gr.Chatbot(label="Chat History", show_label=True)
        sentiment = gr.Textbox(label="Detected Sentiment", show_label=True)
        emotion = gr.Textbox(label="Detected Emotion", show_label=True)
        professionals = gr.DataFrame(
            label="Nearby Health Professionals",
            headers=["Name", "Address"],
            value=[]
        )
        suggestions_markdown = gr.Markdown(label="Suggestions")
        map_html = gr.HTML(label="Interactive Map")
        def clear_input():
            return "", []
        submit_chatbot.click(
            app_function_chatbot,
            inputs=[user_input, location, query, chatbot],
            outputs=[chatbot, sentiment, emotion, suggestions_markdown, professionals, map_html],
        )
        clear_chatbot.click(
            clear_input,
            inputs=None,
            outputs=[user_input, chatbot]
        )
    with gr.Tab("Groq Medical Q&A"):
        groq_input = gr.Textbox(label="Ask a medical question (Groq LLM)")
        groq_output = gr.Textbox(label="Groq LLM Response")
        groq_button = gr.Button("Ask Groq LLM")
        groq_button.click(
            ask_groq_llm,
            inputs=groq_input,
            outputs=groq_output
        )
    with gr.Tab("Disease Prediction"):
        gr.HTML("""
        <h1 style="color: #388e3c; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 3.5em; margin-bottom: 0;">
            Disease Prediction
        </h1>
        <p style="color: #4caf50; font-family: 'Helvetica', sans-serif; text-align: center; font-size: 1.5em; margin-top: 0;">
            Help us understand your symptoms!
        </p>
        <ul style="text-align: center; color: #2e7d32;">
            <li>πŸ‘‰ Select at least 3 symptoms from the dropdown lists.</li>
            <li>πŸ‘‰ Click on "Predict Disease" to see potential conditions.</li>
            <li>πŸ‘‰ Review the results displayed below!</li>
        </ul>
        """)
        symptom1 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 1", value=None)
        symptom2 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 2", value=None)
        symptom3 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 3", value=None)
        symptom4 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 4", value=None)
        symptom5 = gr.Dropdown(choices=[None] + list(X_train.columns), label="Select Symptom 5", value=None)
        submit_disease = gr.Button(value="Predict Disease", variant="primary")
        disease_prediction_result = gr.Markdown(label="Predicted Diseases")
        submit_disease.click(
            lambda sym1, sym2, sym3, sym4, sym5: predict_disease([sym1, sym2, sym3, sym4, sym5]),
            inputs=[symptom1, symptom2, symptom3, symptom4, symptom5],
            outputs=disease_prediction_result
        )

if __name__ == "__main__":
    app.launch(share=True)