File size: 4,041 Bytes
82ad613 80085db 7297a63 82ad613 008a68e 80085db 82ad613 80085db 82ad613 80085db 2fbad9d 80085db 82ad613 80085db 82ad613 80085db 1b724ee 4c2f821 1b724ee 4c2f821 1b724ee 4c2f821 80085db 6ae2919 80085db 82ad613 80085db 82ad613 80085db 82ad613 80085db 82ad613 80085db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from ultralyticsplus import YOLO
import cv2
import numpy as np
import requests
from io import BytesIO
import os
model = YOLO('Corn-Disease50epoch.pt')
name = ['Leaf Blight', 'Corn Rust', 'Gray Leaf Spot', 'Healthy']
image_directory = "/home/user/app/images"
def response2(image, image_size=640, conf_threshold=0.3, iou_threshold=0.6):
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
text = ""
name_weap = ""
solution = ""
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
for r in results:
conf = np.array(r.boxes.conf.cpu())
cls = np.array(r.boxes.cls.cpu())
cls = cls.astype(int)
xywh = np.array(r.boxes.xywh.cpu())
xywh = xywh.astype(int)
for con, cl, xy in zip(conf, cls, xywh):
cone = con.astype(float)
conef = round(cone, 3)
conef = conef * 100
text += (f"Detected {name[cl]} with confidence {round(conef, 1)}% at ({xy[0]},{xy[1]})\n")
if name[cl] == "Corn Rust":
solution = (f"{solution} Apply fungicides with active ingredients like propiconazole or tebuconazole when symptoms appear.\n")
elif name[cl] == "Gray Leaf Spot":
solution = (f"{solution} Use fungicides containing strobilurins (e.g., azoxystrobin) or triazoles.\n")
elif name[cl] == "Leaf Blight":
solution = (f"{solution} Treat with fungicides such as mancozeb or chlorothalonil during the early stages.\n")
return im, text, solution
def pil_to_cv2(pil_image):
open_cv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
return open_cv_image
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
pil_img = Image.fromarray(frame[..., ::-1])
result = model.predict(source=pil_img)
for r in result:
im_array = r.plot()
processed_frame = Image.fromarray(im_array[..., ::-1])
yield processed_frame
cap.release()
inputs = [
gr.Image(type="pil", label="Input Image"),
gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, label="Confidence Threshold"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.6, step=0.05, label="IOU Threshold"),
]
outputs = [
gr.Image(type="pil", label="Output Image"),
gr.Textbox(label="Result"),
gr.Textbox(label="Solution")
]
examples = [
["/home/user/app/images/jagung7.jpg", 640, 0.3, 0.6],
["/home/user/app/images/jagung4.jpeg", 640, 0.3, 0.6],
["/home/user/app/images/jagung6.jpeg", 640, 0.3, 0.6]
]
title = """Corn Diseases Detection Finetuned YOLOv11 <br></br> <a href="https://colab.research.google.com/drive/1vnxtgPKOgfC8nyCL9hjrNFed75StsqGQ?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;"> </a> """
description = 'Image Size: Defines the image size for inference.\nConfidence Treshold: Sets the minimum confidence threshold for detections.\nIOU Treshold: Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Useful for reducing duplicates.'
video_iface = gr.Interface(
fn=process_video,
inputs=gr.Video(label="Upload Video", interactive=True),
outputs=gr.Image(type="pil", label="Result"),
title=title,
description="Upload video for inference."
)
image_iface = gr.Interface(
fn=response2,
inputs=inputs,
outputs=outputs,
examples=examples,
title=title,
description=description
)
demo = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])
if __name__ == '__main__':
demo.launch() |