File size: 4,041 Bytes
82ad613
80085db
 
 
 
 
 
 
 
 
 
7297a63
82ad613
008a68e
80085db
82ad613
80085db
82ad613
80085db
 
2fbad9d
80085db
 
 
 
 
 
 
 
 
 
 
 
 
 
82ad613
80085db
82ad613
80085db
1b724ee
4c2f821
1b724ee
4c2f821
1b724ee
4c2f821
80085db
6ae2919
80085db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82ad613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80085db
 
 
82ad613
 
80085db
82ad613
80085db
 
82ad613
 
 
 
 
 
 
 
80085db
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from ultralyticsplus import YOLO
import cv2
import numpy as np
import requests
from io import BytesIO
import os

model = YOLO('Corn-Disease50epoch.pt')
name = ['Leaf Blight', 'Corn Rust', 'Gray Leaf Spot', 'Healthy']
image_directory = "/home/user/app/images"

def response2(image, image_size=640, conf_threshold=0.3, iou_threshold=0.6):
    results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
                       
    text = ""
    name_weap = ""
    solution = ""

    for r in results:
        im_array = r.plot()
        im = Image.fromarray(im_array[..., ::-1])

    for r in results:
        conf = np.array(r.boxes.conf.cpu())
        cls = np.array(r.boxes.cls.cpu())
        cls = cls.astype(int)
        xywh = np.array(r.boxes.xywh.cpu())
        xywh = xywh.astype(int)  
      
        for con, cl, xy in zip(conf, cls, xywh):
            cone = con.astype(float)
            conef = round(cone, 3)
            conef = conef * 100
            text += (f"Detected {name[cl]} with confidence {round(conef, 1)}% at ({xy[0]},{xy[1]})\n")
                
            if name[cl] == "Corn Rust":
                solution = (f"{solution} Apply fungicides with active ingredients like propiconazole or tebuconazole when symptoms appear.\n") 
            elif name[cl] == "Gray Leaf Spot":
                solution = (f"{solution} Use fungicides containing strobilurins (e.g., azoxystrobin) or triazoles.\n") 
            elif name[cl] == "Leaf Blight":
                solution = (f"{solution} Treat with fungicides such as mancozeb or chlorothalonil during the early stages.\n") 
           
    return im, text, solution

def pil_to_cv2(pil_image):
    open_cv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
    return open_cv_image

def process_video(video_path):
    cap = cv2.VideoCapture(video_path)
    
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        pil_img = Image.fromarray(frame[..., ::-1])  
        result = model.predict(source=pil_img)
        for r in result:
            im_array = r.plot()
            processed_frame = Image.fromarray(im_array[..., ::-1])  
        yield processed_frame
    cap.release()

inputs = [
    gr.Image(type="pil", label="Input Image"),
    gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size"),
    gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, label="Confidence Threshold"),
    gr.Slider(minimum=0.0, maximum=1.0, value=0.6, step=0.05, label="IOU Threshold"),
]

outputs = [
    gr.Image(type="pil", label="Output Image"),
    gr.Textbox(label="Result"), 
    gr.Textbox(label="Solution")
]

examples = [
    ["/home/user/app/images/jagung7.jpg", 640, 0.3, 0.6],
    ["/home/user/app/images/jagung4.jpeg", 640, 0.3, 0.6],
    ["/home/user/app/images/jagung6.jpeg", 640, 0.3, 0.6]
]

title = """Corn Diseases Detection Finetuned YOLOv11 <br></br> <a href="https://colab.research.google.com/drive/1vnxtgPKOgfC8nyCL9hjrNFed75StsqGQ?usp=sharing"> <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Colab" style="display:inline-block;"> </a> """
description = 'Image Size: Defines the image size for inference.\nConfidence Treshold: Sets the minimum confidence threshold for detections.\nIOU Treshold: Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Useful for reducing duplicates.'

video_iface = gr.Interface(
    fn=process_video,
    inputs=gr.Video(label="Upload Video", interactive=True),
    outputs=gr.Image(type="pil", label="Result"),
    title=title,
    description="Upload video for inference."
)

image_iface = gr.Interface(
    fn=response2, 
    inputs=inputs, 
    outputs=outputs, 
    examples=examples, 
    title=title, 
    description=description
)

demo = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])

if __name__ == '__main__':
    demo.launch()