Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
|
2 |
import gradio as gr
|
3 |
import matplotlib.pyplot as plt
|
4 |
from PIL import Image
|
@@ -6,58 +5,85 @@ from ultralytics import YOLO
|
|
6 |
import cv2
|
7 |
import numpy as np
|
8 |
import requests
|
9 |
-
|
10 |
import os
|
11 |
|
12 |
model = YOLO('Corn-Disease50Epoch.pt')
|
13 |
name = ['Leaf Blight', 'Corn Rust', 'Gray Leaf Spot', 'Healthy']
|
14 |
image_directory = "/home/user/app/images"
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
def response2(image, image_size=640, conf_threshold=0.3, iou_threshold=0.6):
|
17 |
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
|
18 |
-
|
19 |
text = ""
|
20 |
-
name_weap = ""
|
21 |
solution = ""
|
22 |
|
|
|
|
|
23 |
for r in results:
|
24 |
im_array = r.plot()
|
25 |
-
im = Image.fromarray(im_array[..., ::-1])
|
26 |
-
|
27 |
for r in results:
|
28 |
conf = np.array(r.boxes.conf.cpu())
|
29 |
-
cls = np.array(r.boxes.cls.cpu())
|
30 |
-
|
31 |
-
|
32 |
-
xywh = xywh.astype(int)
|
33 |
-
|
34 |
for con, cl, xy in zip(conf, cls, xywh):
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
return im, text, solution
|
48 |
|
49 |
def pil_to_cv2(pil_image):
|
50 |
-
|
51 |
-
return open_cv_image
|
52 |
|
53 |
def process_video(video_path):
|
54 |
cap = cv2.VideoCapture(video_path)
|
55 |
-
|
56 |
while cap.isOpened():
|
57 |
ret, frame = cap.read()
|
58 |
if not ret:
|
59 |
break
|
60 |
-
|
61 |
pil_img = Image.fromarray(frame[..., ::-1])
|
62 |
result = model.predict(source=pil_img)
|
63 |
for r in result:
|
@@ -76,7 +102,7 @@ inputs = [
|
|
76 |
outputs = [
|
77 |
gr.Image(type="pil", label="Output Image"),
|
78 |
gr.Textbox(label="Result"),
|
79 |
-
gr.Textbox(label="Solution")
|
80 |
]
|
81 |
|
82 |
examples = [
|
@@ -108,4 +134,5 @@ image_iface = gr.Interface(
|
|
108 |
demo = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])
|
109 |
|
110 |
if __name__ == '__main__':
|
111 |
-
demo.launch()
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import matplotlib.pyplot as plt
|
3 |
from PIL import Image
|
|
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
import requests
|
8 |
+
import json
|
9 |
import os
|
10 |
|
11 |
model = YOLO('Corn-Disease50Epoch.pt')
|
12 |
name = ['Leaf Blight', 'Corn Rust', 'Gray Leaf Spot', 'Healthy']
|
13 |
image_directory = "/home/user/app/images"
|
14 |
|
15 |
+
def get_deepseek_solution(disease_name):
|
16 |
+
try:
|
17 |
+
response = requests.post(
|
18 |
+
url="https://openrouter.ai/api/v1/chat/completions",
|
19 |
+
headers={
|
20 |
+
"Authorization": f"Bearer {API_KEY}",
|
21 |
+
"Content-Type": "application/json"
|
22 |
+
},
|
23 |
+
data=json.dumps({
|
24 |
+
"model": "deepseek/deepseek-r1-distill-llama-70b:free",
|
25 |
+
"messages": [
|
26 |
+
{
|
27 |
+
"role": "system",
|
28 |
+
"content": "Anda adalah asisten yang hanya dapat memberikan jawaban berdasarkan materi yang diberikan."
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"role": "user",
|
32 |
+
"content": f"Apa penyebab dan solusi penyakit jagung '{disease_name}'?"
|
33 |
+
}
|
34 |
+
]
|
35 |
+
})
|
36 |
+
)
|
37 |
+
|
38 |
+
if response.status_code == 200:
|
39 |
+
result = response.json()
|
40 |
+
return result.get("choices", [{}])[0].get("message", {}).get("content", "").strip()
|
41 |
+
else:
|
42 |
+
return "DeepSeek gagal memberikan jawaban (kode error: {}).".format(response.status_code)
|
43 |
+
|
44 |
+
except requests.exceptions.RequestException as e:
|
45 |
+
return f"Gagal terhubung ke DeepSeek: {e}"
|
46 |
+
|
47 |
def response2(image, image_size=640, conf_threshold=0.3, iou_threshold=0.6):
|
48 |
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
|
49 |
+
|
50 |
text = ""
|
|
|
51 |
solution = ""
|
52 |
|
53 |
+
detected_diseases = set()
|
54 |
+
|
55 |
for r in results:
|
56 |
im_array = r.plot()
|
57 |
+
im = Image.fromarray(im_array[..., ::-1])
|
|
|
58 |
for r in results:
|
59 |
conf = np.array(r.boxes.conf.cpu())
|
60 |
+
cls = np.array(r.boxes.cls.cpu()).astype(int)
|
61 |
+
xywh = np.array(r.boxes.xywh.cpu()).astype(int)
|
62 |
+
|
|
|
|
|
63 |
for con, cl, xy in zip(conf, cls, xywh):
|
64 |
+
confidence = round(float(con) * 100, 1)
|
65 |
+
text += f"Detected {name[cl]} with confidence {confidence}% at ({xy[0]},{xy[1]})\n"
|
66 |
+
detected_diseases.add(name[cl])
|
67 |
+
|
68 |
+
for disease in detected_diseases:
|
69 |
+
if disease != "Healthy":
|
70 |
+
solution += f"\n--- {disease} ---\n"
|
71 |
+
deepseek_explanation = get_deepseek_solution(disease)
|
72 |
+
solution += deepseek_explanation + "\n"
|
73 |
+
else:
|
74 |
+
solution += "\nTanaman tampak sehat. Tidak ada tindakan diperlukan.\n"
|
75 |
+
|
76 |
+
return im, text.strip(), solution.strip()
|
77 |
|
78 |
def pil_to_cv2(pil_image):
|
79 |
+
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
|
|
|
80 |
|
81 |
def process_video(video_path):
|
82 |
cap = cv2.VideoCapture(video_path)
|
|
|
83 |
while cap.isOpened():
|
84 |
ret, frame = cap.read()
|
85 |
if not ret:
|
86 |
break
|
|
|
87 |
pil_img = Image.fromarray(frame[..., ::-1])
|
88 |
result = model.predict(source=pil_img)
|
89 |
for r in result:
|
|
|
102 |
outputs = [
|
103 |
gr.Image(type="pil", label="Output Image"),
|
104 |
gr.Textbox(label="Result"),
|
105 |
+
gr.Textbox(label="AI-Powered Solution")
|
106 |
]
|
107 |
|
108 |
examples = [
|
|
|
134 |
demo = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])
|
135 |
|
136 |
if __name__ == '__main__':
|
137 |
+
demo.launch()
|
138 |
+
|