import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from ultralytics import YOLO
import cv2
import numpy as np
import requests
import json
import os
model = YOLO('Corn-Disease50Epoch.pt')
name = ['Corn Rust', 'Leaf Blight', 'Gray Leaf Spot', 'Healthy']
image_directory = "/home/user/app/images"
API_KEY = os.environ.get("API_KEY")
def get_deepseek_solution(disease_name):
try:
response = requests.post(
url="https://openrouter.ai/api/v1/chat/completions",
headers={
"Authorization": f"Bearer {API_KEY}",
"Content-Type": "application/json"
},
data=json.dumps({
"model": "deepseek/deepseek-r1-distill-llama-70b:free",
"messages": [
{
"role": "system",
"content": "Anda adalah asisten yang hanya dapat memberikan jawaban berdasarkan materi yang diberikan."
},
{
"role": "user",
"content": f"Apa penyebab dan solusi penyakit jagung '{disease_name}'?"
}
]
})
)
if response.status_code == 200:
result = response.json()
return result.get("choices", [{}])[0].get("message", {}).get("content", "").strip()
else:
return "DeepSeek gagal memberikan jawaban (kode error: {}).".format(response.status_code)
except requests.exceptions.RequestException as e:
return f"Gagal terhubung ke DeepSeek: {e}"
def response2(image, image_size=640, conf_threshold=0.3, iou_threshold=0.6):
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
text = ""
solution = ""
detected_diseases = set()
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
for r in results:
conf = np.array(r.boxes.conf.cpu())
cls = np.array(r.boxes.cls.cpu()).astype(int)
xywh = np.array(r.boxes.xywh.cpu()).astype(int)
for con, cl, xy in zip(conf, cls, xywh):
if cl < len(name):
disease_name = name[cl]
else:
disease_name = "Unknown"
confidence = round(float(con) * 100, 1)
text += f"Detected {disease_name} with confidence {confidence}% at ({xy[0]},{xy[1]})\n"
detected_diseases.add(disease_name)
explanation_cache = {}
for disease in detected_diseases:
if disease.lower() == "healthy":
solution += f"\n--- {disease} ---\nTanaman tampak sehat. Tidak ada tindakan diperlukan.\n"
elif disease in name:
if disease not in explanation_cache:
explanation_cache[disease] = get_deepseek_solution(disease)
solution += f"\n--- {disease} ---\n{explanation_cache[disease]}\n"
else:
solution += f"\n--- {disease} ---\nJenis penyakit tidak dikenali. Tidak dapat memberikan solusi.\n"
return im, text.strip(), solution.strip()
def pil_to_cv2(pil_image):
return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
pil_img = Image.fromarray(frame[..., ::-1])
result = model.predict(source=pil_img)
for r in result:
im_array = r.plot()
processed_frame = Image.fromarray(im_array[..., ::-1])
yield processed_frame
cap.release()
inputs = [
gr.Image(type="pil", label="Input Image"),
gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.3, step=0.05, label="Confidence Threshold"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.6, step=0.05, label="IOU Threshold"),
]
outputs = [
gr.Image(type="pil", label="Output Image"),
gr.Textbox(label="Result"),
gr.Textbox(label="AI-Powered Solution")
]
examples = [
["/home/user/app/images/jagung7.jpg", 640, 0.3, 0.6],
["/home/user/app/images/jagung4.jpeg", 640, 0.3, 0.6],
["/home/user/app/images/jagung6.jpeg", 640, 0.3, 0.6]
]
title = """Corn Diseases Detection Finetuned YOLOv11
"""
description = 'Image Size: Ukuran gambar untuk inferensi.\nConfidence Threshold: Minimum confidence untuk deteksi.\nIOU Threshold: Threshold untuk Non-Maximum Suppression (NMS).'
video_iface = gr.Interface(
fn=process_video,
inputs=gr.Video(label="Upload Video", interactive=True),
outputs=gr.Image(type="pil", label="Result"),
title=title,
description="Upload video untuk deteksi penyakit jagung."
)
image_iface = gr.Interface(
fn=response2,
inputs=inputs,
outputs=outputs,
examples=examples,
title=title,
description=description
)
demo = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])
if __name__ == '__main__':
demo.launch()