|
import gradio as gr |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
from ultralyticsplus import YOLO, render_result |
|
import cv2 |
|
import numpy as np |
|
|
|
model = YOLO('best (1).pt') |
|
|
|
|
|
def response(image): |
|
print(image) |
|
results = model(image) |
|
for i, r in enumerate(results): |
|
|
|
|
|
im_bgr = r.plot() |
|
im_rgb = im_bgr[..., ::-1] |
|
|
|
|
|
|
|
return im_rgb |
|
|
|
def yoloV8_func(image: gr.Image = None, |
|
image_size: gr.Slider = 640, |
|
conf_threshold: gr.Slider = 0.4, |
|
iou_threshold: gr.Slider = 0.50): |
|
model = YOLO('best (1).pt') |
|
|
|
results = model.predict(image, |
|
conf=conf_threshold, |
|
iou=iou_threshold, |
|
imgsz=image_size) |
|
|
|
box = results[0].boxes |
|
|
|
render = render_result(model=model, image=image, result=results[0], rect_th = 4, text_th = 4) |
|
return render |
|
|
|
|
|
inputs = [ |
|
gr.Image(type="filepath", label="Input Image"), |
|
gr.Slider(minimum=320, maximum=1280, value=640, |
|
step=32, label="Image Size"), |
|
gr.Slider(minimum=0.0, maximum=1.0, value=0.25, |
|
step=0.05, label="Confidence Threshold"), |
|
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, |
|
step=0.05, label="IOU Threshold"), |
|
] |
|
|
|
|
|
outputs = gr.Image( type="filepath", label="Output Image") |
|
|
|
title = "YOLOv8 Custom Object Detection by Uyen Nguyen" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
iface = gr.Interface(fn=yoloV8_func, inputs=inputs, outputs=outputs) |
|
iface.launch() |
|
|