Dricz commited on
Commit
b0e1d53
·
verified ·
1 Parent(s): 9e2718e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -5
app.py CHANGED
@@ -2,15 +2,36 @@ import gradio as gr
2
  import matplotlib.pyplot as plt
3
  from PIL import Image
4
  from ultralytics import YOLO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
  model = YOLO('best (1).pt')
7
 
8
  def response(image):
9
- for i, r in enumerate(results):
10
- # Plot results image
11
- im_bgr = r.plot() # BGR-order numpy array
12
- im_rgb = im_bgr[..., ::-1] # Convert BGR to RGB
13
-
14
  return im_rgb
15
 
16
  iface = gr.Interface(fn=response, inputs="image", outputs="image")
 
2
  import matplotlib.pyplot as plt
3
  from PIL import Image
4
  from ultralytics import YOLO
5
+ import cv2
6
+ import numpy as np
7
+
8
+ def image_preprocess(image):
9
+
10
+ img_height, img_width = image.shape[0:2]
11
+ image_converted = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
12
+ ih, iw = [input_size, input_size] # [input_size, input_size] = [640, 640]
13
+ h, w, _ = image.shape # [1944, 2592]
14
+
15
+ scale = min(iw/w, ih/h) # min(0.2469, 0.3292) = 0.2469
16
+ nw, nh = int(scale * w), int(scale * h) # [640, 480]
17
+ image_resized = cv2.resize(image_converted, (nw, nh))
18
+
19
+ image_padded = np.full(shape=[ih, iw, 3], fill_value=128.0)
20
+ dw, dh = (iw - nw) // 2, (ih-nh) // 2 # [0, 80]
21
+ image_padded[dh:nh+dh, dw:nw+dw, :] = image_resized # image_padded[80:256, 32:224]
22
+ image_padded = image_padded / 255.
23
+ # image_resized = image_resized / 255.
24
+ image_padded = image_padded[np.newaxis, ...].astype(np.float32)
25
+ image_padded = np.moveaxis(image_padded, -1, 1)
26
+
27
+
28
+ return image_padded, img_width, img_height, image
29
 
30
  model = YOLO('best (1).pt')
31
 
32
  def response(image):
33
+ res = image_preprocess(image)
34
+ im_rgb = model(res)
 
 
 
35
  return im_rgb
36
 
37
  iface = gr.Interface(fn=response, inputs="image", outputs="image")