File size: 4,986 Bytes
0659d13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e82d86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---
title: My Streamlit Project
emoji: πŸ”₯
colorFrom: blue
colorTo: indigo
sdk: streamlit
python_version: '3.10'
tags:
- streamlit
- data-visualization
app_file: app.py
sdk_version: 1.39.0
---


# 🌍 **FINDEX Data Analysis & Prediction App** πŸ“Š

Welcome to the **FINDEX Data Analysis & Prediction App**! This app provides insights and predictions related to financial inclusion based on the Global Findex 2021 dataset from the World Bank. The app allows users to explore data distributions, statistics, and use machine learning to predict the likelihood of bank account ownership.

## πŸš€ **Table of Contents**
- [Introduction](#introduction)
- [Features](#features)
- [Installation](#installation)
- [Usage](#usage)
- [Pages Overview](#pages-overview)
- [Folder Structure](#folder-structure)
- [Contributing](#contributing)
- [License](#license)
- [Contact](#contact)

---

## 🌟 **Introduction**

The **FINDEX Data Analysis & Prediction App** is a multi-page Streamlit application that provides a detailed exploration of financial inclusion data. The app uses machine learning models to predict the likelihood of an individual owning a bank account based on various socioeconomic factors, including income, education, and digital payment usage.

Whether you're looking to explore demographic trends or predict financial behavior, this app delivers intuitive visualizations and powerful AI-driven insights.

---

## πŸ”₯ **Features**
- **Data Visualization**: Visualize the distribution of key features, including age, income, and account ownership.
- **Statistics Overview**: View summary statistics on different demographic groups.
- **Machine Learning Predictions**: Predict the likelihood of bank account ownership using an XGBoost model.
- **SHAP Explanations**: Understand the key factors behind the predictions with SHAP visualizations.
- **Filtering Options**: Customize your analysis by filtering data by gender, education, age, and more.

---

## πŸ’» **Installation**

To run the app locally, follow these steps:

1. **Clone the repository**:
    ```bash
    git clone https://github.com/Driisa/Final-submission-BDS-app.py.git
    ```

2. Navigate to the project directory:
    ```bash
    cd FINDEX-App
    ```

3. Set up a virtual environment (optional but recommended):
    ```bash
    python -m venv venv
    source venv/bin/activate  # On Windows use: venv\Scripts\activate
    ```

4. Install the required dependencies:
    ```bash
    pip install -r requirements.txt
    ```

5. Run the app:
    ```bash
    streamlit run app.py
    ```

6. Open your browser: Visit http://localhost:8501 to start using the app!

---

## πŸ•Ή **Usage**

- **Navigate the App**: Use the sidebar to switch between different pages such as Info, Distribution, Statistics, and Prediction.
- **Input Your Data**: On the Prediction page, provide the input data for demographic and socioeconomic factors to predict bank account ownership.
- **Visualize Data**: Use the Distribution and Statistics pages to explore data distributions and key insights from the dataset.

---

## πŸ“š **Pages Overview**

1️⃣ **Info**  
Provides an introduction to the Global Findex dataset and the key variables used in the analysis.

2️⃣ **Distribution**  
Visualize the distribution of various features, including age, mobile ownership, internet access, and account ownership, with bar plots and histograms.

3️⃣ **Statistics**  
Analyze summary statistics for key demographic groups, including age and education, and view bar plots showing account ownership across income and age groups.

4️⃣ **Prediction**  
Predict whether an individual has a bank account based on inputted data. The prediction is powered by an XGBoost model, and SHAP visualizations help explain the predictions.

---

## πŸ“ **Folder Structure**

```bash
FINDEX-App/
β”œβ”€β”€ models/
β”‚   β”œβ”€β”€ df.joblib
β”‚   β”œβ”€β”€ df_sample.joblib
β”‚   β”œβ”€β”€ ohe.joblib
β”‚   β”œβ”€β”€ scaler.joblib
β”‚   └── xgb_clf.joblib
β”œβ”€β”€ app.py
β”œβ”€β”€ README.md
β”œβ”€β”€ requirements.txt
└── .streamlit/
```

## πŸ’‘ **Contributing**

Want to contribute to the project? Here’s how:

1. **Fork the repository**.
2. **Create a new branch** for your feature or bug fix:
    ```bash
    git checkout -b feature-new-feature
    ```
3. Make your changes and commit them:
    ```bash
    git commit -m "Added a new feature!"
    ```
4. Push the changes to your forked repo:
    ```bash
    git push origin feature-new-feature
    ```
5. Open a Pull Request, and let’s review your changes!

---

## πŸ“œ **License**

This project is licensed under the MIT License. See the LICENSE file for more details.

---

## πŸ“ž **Contact**

If you have any issues or suggestions, feel free to reach out by opening a GitHub issue. We’d love to hear from you and improve the app based on your feedback!

---

πŸŽ‰ **Enjoy exploring financial inclusion data with the FINDEX Data Analysis & Prediction App!** πŸŽ‰