Driisa's picture
Upload 9 files
2e82d86 verified
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import streamlit as st
from pathlib import Path
import os
import joblib
import shap
from streamlit_shap import st_shap
from streamlit_folium import st_folium # Import st_folium to embed Folium map in Streamlit
import folium
# Load the model, scaler, one-hot encoder, and pre-processed DataFrame
@st.cache_resource # Cache the model objects to avoid reloading on every interaction
def load_model_objects():
models_dir = os.path.join(os.getcwd(), 'models') # Adjust the 'models' folder if needed
xgb_clf = joblib.load(os.path.join(models_dir, 'xgb_clf.joblib'))
scaler = joblib.load(os.path.join(models_dir, 'scaler.joblib'))
ohe = joblib.load(os.path.join(models_dir, 'ohe.joblib'))
df = joblib.load(os.path.join(models_dir, 'df.joblib')) # Pre-processed DataFrame
df_sample = joblib.load(os.path.join(models_dir, 'df_sample.joblib')) # Sampled DataFrame
return xgb_clf, scaler, ohe, df, df_sample
# Load the model, scaler, encoder, and pre-processed DataFrame
xgb_clf, scaler, ohe, df, df_sample = load_model_objects()
# =============================================================================================================================
# Sidebar navigation
# =============================================================================================================================
st.sidebar.title("Navigation")
page = st.sidebar.radio("Go to", ["Info", "Destribution", "Statistics", "Prediction"])
# =============================================================================================================================
# Info page
# =============================================================================================================================
if page == "Info": # if the page is info then show following
st.title("Info")
st.write("Welcome to the Streamlit Dashboard of the FINDEX dataset!")
st.write("This dashboard provides insights from the final submission in Introduction to business data science. The data in this app is from the Global Findex 2021 / World Bank survey.")
st.write("The dataset from Findex contains financial inclusion data from 2021. The data covers various demographics, income, and financial behaviors across multiple countries.")
st.subheader("Understand Business Context - Problem Definition")
st.write("Based on the data this app will help to understand the financial inclusion of the respondents. The app wil adress the following questions.")
st.write("""
- Can we predict whether an individual is likely to own a bank account based on income, education, and other socioeconomic factors?
- What factors influence on having and account?
- How is the correlation between the diffenrent varibles?
""")
st.subheader("Key Variable Descriptions (df_sample)")
st.write("""
- **Account**: Binary variable indicating whether the respondent has a bank account.
- **Income**: Income quintile of the respondent.
- **Remittances**: Amount of remittances received by the respondent.
- **Education Level**: Education level of the respondent.
- **Age**: Respondent's age.
- **Gender**: Gender of the respondent.
- **Mobile Owner**: Binary variable indicating whether the respondent owns a mobile phone.
- **Internet Access**: Binary variable indicating whether the respondent has access to the internet.
- **Pay Utilities**: Binary variable indicating if the respondent uses digital payment methods for paying utilities.
- **Receive Transfers**: Binary variable indicating if the respondent receives money transfers.
- **Receive Pension**: Binary variable indicating if the respondent receives a pension.
- **Economy**: Country of the respondent.
- **Regionwb**: World Bank region of the respondent.
- **Digital Payment Usage**: Binary variable indicating if the respondent uses digital payment methods.
""")
st.write("All these variables are used to predict the account variable in the prediction page.")
# =============================================================================================================================
# Destribution page
# =============================================================================================================================
elif page == "Destribution": # if the page is destribution then show following
st.title("Visulisation of the data distribution og the data")
st.write("Here is a preview of the Age Distribution:")
def plot_age_distribution(data):
fig, ax = plt.subplots(figsize=(8, 6))
sns.histplot(data['age'], kde=True)
st.pyplot(fig)
plot_age_distribution(df)
st.write("Here is a preview of the percentage of the different features:")
# Dictionary to map numeric codes to their actual meanings
mapping_dict = {
'mobile_owner': {1: 'Owns mobile phone', 2: 'Does not own', 3: "Don't know"},
'internet_access': {1: 'Has access', 2: 'No access', 3: "Don't know"},
'pay_utilities': {1: 'Paid from account', 2: 'Paid in cash', 3: 'Other method', 4: 'Did not pay'},
'receive_transfers': {1: 'Received via account', 2: 'Received in cash', 3: 'Other method', 4: 'Did not receive'},
'receive_pension': {1: 'Received via account', 2: 'Received in cash', 3: 'Other method', 4: 'Did not receive'},
'education_level': {1: 'Primary or less', 2: 'Secondary', 3: 'Tertiary or more'},
'gender': {1: 'Female', 2: 'Male'},
'account': {1: 'Yes', 0: 'No'},
'digital_payment_usage': {1: 'Yes', 0: 'No'}
}
# List of categorical/binary features to plot
cat_features = [
'account', 'mobile_owner', 'internet_access',
'pay_utilities', 'receive_transfers', 'gender',
'education_level', 'digital_payment_usage'
]
# Set up the figure for multiple subplots
fig, axes = plt.subplots(4, 2, figsize=(10, 20)) # 2 rows, 4 columns abd the firure size
# Flatten axes to easily iterate over them in a single loop
axes = axes.flatten() #
# Loop through features to create bar plots (instead of doing the same for each plot, we can do it once using loop)
for i, col in enumerate(cat_features):
# Create a copy of the current column and apply mapping for the plot
data_for_plot = df_sample[col].copy().replace(mapping_dict.get(col, {})) # Use copy() to avoid modifying the original data
# Calculate percentages for each category
percentage_data = data_for_plot.value_counts(normalize=True) * 100
# Plot the bar plot showing percentage distribution
sns.barplot(x=percentage_data.index, y=percentage_data.values, ax=axes[i], palette="Blues_d")
# Set plot title and labels
axes[i].set_title(f'Percentage Distribution of {col}')
axes[i].set_ylabel('Percentage (%)')
axes[i].set_xlabel(col)
# Rotate x-axis labels if there are long categories
axes[i].set_xticklabels(axes[i].get_xticklabels(), rotation=45, ha='right')
# Adjust layout for better appearance
plt.tight_layout()
# Display the plot in Streamlit
st.pyplot(fig)
# =============================================================================================================================
# Statistics page
# =============================================================================================================================
elif page == "Statistics":
# sidebar filtering settings
# Map gender and education level codes to readable labels for the select boxes
gender_mapping = {1: 'Female', 2: 'Male'}
education_level_mapping = {1: 'Primary or less', 2: 'Secondary', 3: 'Tertiary or more'}
# Create new columns for the labels in the df_sample dataframe
df_sample['gender_label'] = df_sample['gender'].map(gender_mapping)
df_sample['education_level_label'] = df_sample['education_level'].map(education_level_mapping)
# Sidebar economy dropdown
selected_economy = st.sidebar.multiselect('Select Economy', df_sample['economy'].unique(), default=[])
# Sidebar gender dropdown (using gender_label column)
selected_genders = st.sidebar.multiselect('Select Gender', df_sample['gender_label'].unique(), default=[])
# Sidebar education level dropdown (using education_level_label column)
selected_educational_level = st.sidebar.multiselect('Select educational level', df_sample['education_level_label'].unique(), default=[])
# Sidebar Age Slider
st.sidebar.header('Filter by Age')
age_range = st.sidebar.slider('Select Age Range', int(df_sample['age'].min()), int(df_sample['age'].max()), (15, 99))
# Initial filter - apply all conditions cumulatively
filtered_data = df_sample[df_sample['age'].between(age_range[0], age_range[1])]
# Apply economy filter if selections are made
if selected_economy:
filtered_data = filtered_data[filtered_data['economy'].isin(selected_economy)]
# Apply gender filter based on the gender_label column
if selected_genders:
filtered_data = filtered_data[filtered_data['gender_label'].isin(selected_genders)]
# Apply educational level filter based on the education_level_label column
if selected_educational_level:
filtered_data = filtered_data[filtered_data['education_level_label'].isin(selected_educational_level)]
st.title("Statistics Page")
# Check if filtered data is not empty and calculate statistics, otherwise use "N/A"
if not filtered_data.empty:
mean_age = f"{filtered_data['age'].mean():.2f}"
median_age = f"{filtered_data['age'].median():.2f}"
max_age = f"{filtered_data['age'].max():.2f}"
min_age = f"{filtered_data['age'].min():.2f}"
else:
mean_age = median_age = max_age = min_age = "N/A"
# Display the statistics in columns
st.subheader('Age Statistics')
col1, col2, col3, col4 = st.columns(4)
col1.metric('Mean Age', mean_age)
col2.metric('Median Age', median_age)
col3.metric('Max Age', max_age)
col4.metric('Min Age', min_age)
# Add your subheader
st.subheader("Boxplot of Age")
# Boxplot before applying the cap and hurdle on age
st.write("Boxplot of Age - figure showing the distribution")
plt.figure(figsize=(8, 4)) # Define the size of the figure
sns.boxplot(x='age', data=filtered_data) # Create a boxplot based on "age"
plt.title("Boxplot of Age") # Title of the plot
st.pyplot(plt) # Display the plot in Streamlit
# If filtered data is not empty, continue with analysis
if not filtered_data.empty:
# Barplot: Account Ownership Distribution by Education Level
st.subheader('Account Ownership Distribution by Education Level')
# Create a crosstab to show the distribution
education_account_dist = pd.crosstab(filtered_data['education_level'], filtered_data['account'], normalize='index') * 100
# Rename columns to be more descriptive
education_account_dist.columns = ['No Account (%)', 'Has Account (%)']
# Bar plot for education level distribution
fig, ax = plt.subplots(figsize=(10, 6))
education_account_dist.plot(kind='bar', stacked=True, color=['#3498db', '#2ecc71'], ax=ax)
ax.set_xlabel('Education Level', fontsize=12)
ax.set_ylabel('Percentage of Account Ownership (%)', fontsize=12)
ax.set_title('Account Ownership by Education Level', fontsize=14)
ax.legend(title='Account Ownership', loc='upper right')
plt.xticks(rotation=45, ha='right')
# Display the plot
st.pyplot(fig)
# Barplot: Income Distribution by Account Ownership
st.subheader('Income Distribution by Account Ownership')
# Create a crosstab to show the distribution
income_account_dist = pd.crosstab(filtered_data['income'], filtered_data['account'], normalize='index') * 100
# Rename columns to be more descriptive
income_account_dist.columns = ['No Account (%)', 'Has Account (%)']
# Bar plot for income quintile distribution
fig, ax = plt.subplots(figsize=(10, 6))
income_account_dist.plot(kind='bar', stacked=True, color=['#3498db', '#2ecc71'], ax=ax)
ax.set_xlabel('Income Quintile', fontsize=12)
ax.set_ylabel('Percentage of Account Ownership (%)', fontsize=12)
ax.set_title('Account Ownership by Income Quintile', fontsize=14)
ax.legend(title='Account Ownership', loc='upper right')
plt.xticks(rotation=45, ha='right')
# Display the plot
st.pyplot(fig)
# Barplot: Percentage of People Having an Account by Age Group
st.subheader('Percentage of People Having an Account by Age Group')
# Calculate the proportion of people having an account in each age group
account_by_age = filtered_data.groupby('age_group')['account'].mean().reset_index()
account_by_age['account'] = (account_by_age['account'] * 100).round(2)
# Create the bar plot using Matplotlib and Seaborn
fig, ax = plt.subplots(figsize=(10, 6))
sns.barplot(x='age_group', y='account', data=account_by_age, palette="Blues_d", ax=ax)
ax.set_xlabel('Age Group', fontsize=12)
ax.set_ylabel('Percentage of Account Ownership (%)', fontsize=12)
ax.set_title('Percentage of People with an Account by Age Group', fontsize=14)
# Add values on top of each bar
for index, value in enumerate(account_by_age['account']):
ax.text(index, value + 1, f'{value}%', ha='center', fontsize=10)
# Rotate x-axis labels for readability
ax.set_xticklabels(ax.get_xticklabels(), rotation=45, ha='right')
# Display the plot in Streamlit
st.pyplot(fig)
else:
st.write("No data available for the selected filters.")
# Display filtered data
st.write("You can download the filtered data here")
st.dataframe(filtered_data)
# Prediction page
# =============================================================================================================================
elif page == "Prediction":
st.title("Prediction Page")
# Get valid categories for economy and regionwb from the OneHotEncoder
economy_categories = ohe.categories_[0]
regionwb_categories = ohe.categories_[1]
# Create SHAP explainer
explainer = shap.TreeExplainer(xgb_clf)
# App description
with st.expander("What's this app?"):
st.markdown("""
This app predicts whether an individual has a bank account based on their demographic and socioeconomic data.
Using advanced AI models trained on relevant data, we provide insights into financial inclusion.
Explore the SHAP explanations to understand the key factors behind the predictions!
""")
st.subheader('Input Your Data')
# User input section
col1, col2 = st.columns(2)
with col1:
inc_q = st.selectbox("Income Quintile", options=[1, 2, 3, 4, 5])
remittances = st.selectbox("Receives Remittances", options=[1, 2, 3, 4, 5, 6],
format_func=lambda x: ['Via Account', 'Via MTO', 'Cash Only', 'Other Methods', 'None', 'Don’t Know'][x-1])
educ = st.selectbox("Education Level", options=[1, 2, 3],
format_func=lambda x: ['Primary or Less', 'Secondary', 'Tertiary'][x-1])
age = st.slider("Age", 18, 100, 30)
female = st.selectbox("Gender", options=[1, 2], format_func=lambda x: 'Female' if x == 1 else 'Male')
with col2:
mobileowner = st.selectbox("Owns Mobile Phone", options=[1, 2, 3, 4],
format_func=lambda x: ['Yes', 'No', 'Don’t Know', 'Refused'][x-1])
internetaccess = st.selectbox("Has Internet Access", options=[1, 2, 3, 4],
format_func=lambda x: ['Yes', 'No', 'Don’t Know', 'Refused'][x-1])
pay_utilities = st.selectbox("Utility Payment Method", options=[1, 2, 3, 4, 5],
format_func=lambda x: ['Account', 'Cash', 'Other', 'None', 'Don’t Know'][x-1])
receive_transfers = st.selectbox("Government Transfer Method", options=[1, 2, 3, 4, 5],
format_func=lambda x: ['Account', 'Cash', 'Other', 'None', 'Don’t Know'][x-1])
receive_pension = st.selectbox("Receives Pension", options=[1, 2, 3, 4, 5],
format_func=lambda x: ['Account', 'Cash', 'Other', 'None', 'Don’t Know'][x-1])
economy = st.selectbox("Economy", options=economy_categories) # Dynamically populated
regionwb = st.selectbox("World Bank Region", options=regionwb_categories) # Dynamically populated
# Prediction button
if st.button('Predict Bank Account Ownership 🚀'):
# Prepare categorical and numerical features
cat_features = pd.DataFrame({'economy': [economy], 'regionwb': [regionwb]})
cat_encoded = pd.DataFrame(ohe.transform(cat_features).todense(), columns=ohe.get_feature_names_out(['economy', 'regionwb']))
num_features = pd.DataFrame({
'inc_q': [inc_q],
'remittances': [remittances],
'educ': [educ],
'age': [age],
'female': [female],
'mobileowner': [mobileowner],
'internetaccess': [internetaccess],
'pay_utilities': [pay_utilities],
'receive_transfers': [receive_transfers],
'receive_pension': [receive_pension]
})
# Scale numerical features
num_scaled = pd.DataFrame(scaler.transform(num_features), columns=num_features.columns)
# Combine categorical and numerical features
features = pd.concat([num_scaled, cat_encoded], axis=1)
# Make prediction
prediction = xgb_clf.predict(features)[0]
# Display prediction
st.metric(label="Bank Account Prediction", value='Has Account' if prediction == 1 else 'No Account')
# SHAP explanation
st.subheader('Factors Behind the Prediction 🤖')
shap_values = explainer.shap_values(features)
st_shap(shap.force_plot(explainer.expected_value, shap_values[0], features), height=400, width=600)