|
import os |
|
import streamlit as st |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
from langchain_chroma import Chroma |
|
from langchain_groq import ChatGroq |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain.chains import ConversationalRetrievalChain |
|
|
|
|
|
GROQ_API_KEY = os.getenv("GROQ_API_KEY") |
|
if not GROQ_API_KEY: |
|
st.error("GROQ_API_KEY is not set. Please configure it in Hugging Face Spaces secrets.") |
|
st.stop() |
|
|
|
|
|
def setup_vectorstore(): |
|
working_dir = os.path.dirname(os.path.abspath(__file__)) |
|
persist_directory = f"{working_dir}/vector_db_dir" |
|
|
|
|
|
embeddings = HuggingFaceEmbeddings() |
|
|
|
|
|
vectorstore = Chroma( |
|
persist_directory=persist_directory, |
|
embedding_function=embeddings |
|
) |
|
return vectorstore |
|
|
|
|
|
def chat_chain(vectorstore): |
|
llm = ChatGroq(model="llama-3.1-70b-versatile", |
|
temperature=0, |
|
groq_api_key=GROQ_API_KEY) |
|
|
|
retriever = vectorstore.as_retriever() |
|
memory = ConversationBufferMemory( |
|
llm=llm, |
|
output_key="answer", |
|
memory_key="chat_history", |
|
return_messages=True |
|
) |
|
|
|
chain = ConversationalRetrievalChain.from_llm( |
|
llm=llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
verbose=True, |
|
return_source_documents=True |
|
) |
|
return chain |
|
|
|
|
|
st.set_page_config( |
|
page_title="Multi Doc Chat", |
|
page_icon="π", |
|
layout="centered" |
|
) |
|
|
|
st.title("π Multi Documents Chatbot") |
|
|
|
|
|
if "chat_history" not in st.session_state: |
|
st.session_state.chat_history = [] |
|
|
|
if "vectorstore" not in st.session_state: |
|
st.session_state.vectorstore = setup_vectorstore() |
|
|
|
if "conversational_chain" not in st.session_state: |
|
st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore) |
|
|
|
|
|
for message in st.session_state.chat_history: |
|
with st.chat_message(message["role"]): |
|
st.markdown(message["content"]) |
|
|
|
|
|
user_input = st.chat_input("Ask AI...") |
|
|
|
if user_input: |
|
st.session_state.chat_history.append({"role": "user", "content": user_input}) |
|
|
|
with st.chat_message("user"): |
|
st.markdown(user_input) |
|
|
|
with st.chat_message("assistant"): |
|
|
|
response = st.session_state.conversational_chain({"question": user_input}) |
|
assistant_response = response["answer"] |
|
|
|
st.markdown(assistant_response) |
|
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response}) |
|
|