Update app.py
Browse files
app.py
CHANGED
@@ -2,14 +2,17 @@
|
|
2 |
|
3 |
import os
|
4 |
import chromadb
|
5 |
-
from chromadb import Client, Settings
|
6 |
import streamlit as st
|
|
|
7 |
from langchain_huggingface import HuggingFaceEmbeddings
|
8 |
from langchain_chroma import Chroma
|
9 |
from langchain_groq import ChatGroq
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.chains import ConversationalRetrievalChain
|
12 |
from PyPDF2 import PdfReader
|
|
|
|
|
|
|
13 |
|
14 |
# Clear ChromaDB cache to fix tenant issue
|
15 |
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
@@ -28,23 +31,15 @@ def process_and_store_pdfs(uploaded_files):
|
|
28 |
for page in reader.pages:
|
29 |
texts.append(page.extract_text())
|
30 |
|
31 |
-
# Combine and embed the texts
|
32 |
embeddings = HuggingFaceEmbeddings()
|
33 |
-
vectorstore = Chroma.from_texts(texts, embedding=embeddings)
|
34 |
return vectorstore
|
35 |
|
36 |
# Function to set up the chat chain
|
37 |
def chat_chain(vectorstore):
|
38 |
-
llm = ChatGroq(model="llama-3.1-70b-versatile",
|
39 |
-
temperature=0,
|
40 |
-
groq_api_key=GROQ_API_KEY)
|
41 |
retriever = vectorstore.as_retriever()
|
42 |
-
memory = ConversationBufferMemory(
|
43 |
-
llm=llm,
|
44 |
-
output_key="answer",
|
45 |
-
memory_key="chat_history",
|
46 |
-
return_messages=True
|
47 |
-
)
|
48 |
|
49 |
chain = ConversationalRetrievalChain.from_llm(
|
50 |
llm=llm,
|
@@ -56,50 +51,96 @@ def chat_chain(vectorstore):
|
|
56 |
)
|
57 |
return chain
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
)
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
if uploaded_files:
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
st.
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|
104 |
else:
|
105 |
st.info("Please upload PDF files to start chatting.")
|
|
|
2 |
|
3 |
import os
|
4 |
import chromadb
|
|
|
5 |
import streamlit as st
|
6 |
+
from base64 import b64decode
|
7 |
from langchain_huggingface import HuggingFaceEmbeddings
|
8 |
from langchain_chroma import Chroma
|
9 |
from langchain_groq import ChatGroq
|
10 |
from langchain.memory import ConversationBufferMemory
|
11 |
from langchain.chains import ConversationalRetrievalChain
|
12 |
from PyPDF2 import PdfReader
|
13 |
+
from gtts import gTTS
|
14 |
+
from pydub import AudioSegment
|
15 |
+
from pydub.playback import play
|
16 |
|
17 |
# Clear ChromaDB cache to fix tenant issue
|
18 |
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
|
|
31 |
for page in reader.pages:
|
32 |
texts.append(page.extract_text())
|
33 |
|
|
|
34 |
embeddings = HuggingFaceEmbeddings()
|
35 |
+
vectorstore = Chroma.from_texts(texts, embedding=embeddings, persist_directory="vector_db_dir")
|
36 |
return vectorstore
|
37 |
|
38 |
# Function to set up the chat chain
|
39 |
def chat_chain(vectorstore):
|
40 |
+
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, groq_api_key=GROQ_API_KEY)
|
|
|
|
|
41 |
retriever = vectorstore.as_retriever()
|
42 |
+
memory = ConversationBufferMemory(output_key="answer", memory_key="chat_history", return_messages=True)
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
chain = ConversationalRetrievalChain.from_llm(
|
45 |
llm=llm,
|
|
|
51 |
)
|
52 |
return chain
|
53 |
|
54 |
+
# Function to record audio using JavaScript
|
55 |
+
RECORD_JS = """
|
56 |
+
const sleep = time => new Promise(resolve => setTimeout(resolve, time));
|
57 |
+
const b2text = blob => new Promise(resolve => {
|
58 |
+
const reader = new FileReader();
|
59 |
+
reader.onloadend = e => resolve(e.srcElement.result);
|
60 |
+
reader.readAsDataURL(blob);
|
61 |
+
});
|
62 |
+
var record = time => new Promise(async resolve => {
|
63 |
+
stream = await navigator.mediaDevices.getUserMedia({ audio: true });
|
64 |
+
recorder = new MediaRecorder(stream);
|
65 |
+
chunks = [];
|
66 |
+
recorder.ondataavailable = e => chunks.push(e.data);
|
67 |
+
recorder.start();
|
68 |
+
await sleep(time);
|
69 |
+
recorder.onstop = async () => {
|
70 |
+
blob = new Blob(chunks);
|
71 |
+
text = await b2text(blob);
|
72 |
+
resolve(text);
|
73 |
+
};
|
74 |
+
recorder.stop();
|
75 |
+
});
|
76 |
+
"""
|
77 |
+
|
78 |
+
def record_audio(seconds=5):
|
79 |
+
"""Record audio via JavaScript and save it as a .wav file."""
|
80 |
+
st.write("Recording...")
|
81 |
+
from streamlit.components.v1 import html
|
82 |
+
html(f'<script>{RECORD_JS}</script>', height=0)
|
83 |
+
b64_audio = st.experimental_js("record", seconds * 1000)
|
84 |
+
audio_bytes = b64decode(b64_audio.split(",")[1])
|
85 |
+
with open("recorded_audio.wav", "wb") as f:
|
86 |
+
f.write(audio_bytes)
|
87 |
+
st.success("Audio recorded and saved!")
|
88 |
+
return "recorded_audio.wav"
|
89 |
+
|
90 |
+
# Transcribe audio using Groq Whisper
|
91 |
+
from groq import Groq
|
92 |
+
def transcribe_audio(filepath):
|
93 |
+
client = Groq(api_key=GROQ_API_KEY)
|
94 |
+
with open(filepath, "rb") as file:
|
95 |
+
transcription = client.audio.transcriptions.create(
|
96 |
+
file=(filepath, file.read()),
|
97 |
+
model="distil-whisper-large-v3-en",
|
98 |
+
response_format="json",
|
99 |
+
language="en"
|
100 |
+
)
|
101 |
+
return transcription.text
|
102 |
+
|
103 |
+
# Text-to-Speech Function
|
104 |
+
def text_to_speech(response):
|
105 |
+
tts = gTTS(text=response, lang='en')
|
106 |
+
tts.save("response.mp3")
|
107 |
+
sound = AudioSegment.from_file("response.mp3")
|
108 |
+
play(sound)
|
109 |
+
|
110 |
+
# Streamlit UI
|
111 |
+
st.title("Chat with PDFs via Audio ποΈπ")
|
112 |
+
|
113 |
+
uploaded_files = st.file_uploader("Upload PDF Files", accept_multiple_files=True, type=["pdf"])
|
114 |
if uploaded_files:
|
115 |
+
vectorstore = process_and_store_pdfs(uploaded_files)
|
116 |
+
chain = chat_chain(vectorstore)
|
117 |
+
st.success("PDFs processed! Ready to chat.")
|
118 |
+
|
119 |
+
# User options for input
|
120 |
+
input_mode = st.radio("Choose input method:", ["Text", "Audio"])
|
121 |
+
|
122 |
+
# Text input
|
123 |
+
if input_mode == "Text":
|
124 |
+
user_input = st.text_input("Ask your question:")
|
125 |
+
if user_input:
|
126 |
+
with st.spinner("Thinking..."):
|
127 |
+
response = chain({"question": user_input})["answer"]
|
128 |
+
st.write(f"**Response:** {response}")
|
129 |
+
text_to_speech(response)
|
130 |
+
|
131 |
+
# Audio input
|
132 |
+
elif input_mode == "Audio":
|
133 |
+
if st.button("Record Audio"):
|
134 |
+
audio_file = record_audio(5)
|
135 |
+
st.audio(audio_file)
|
136 |
+
|
137 |
+
st.write("Transcribing audio...")
|
138 |
+
question = transcribe_audio(audio_file)
|
139 |
+
st.write(f"**You said:** {question}")
|
140 |
+
|
141 |
+
with st.spinner("Thinking..."):
|
142 |
+
response = chain({"question": question})["answer"]
|
143 |
+
st.write(f"**Response:** {response}")
|
144 |
+
text_to_speech(response)
|
|
|
145 |
else:
|
146 |
st.info("Please upload PDF files to start chatting.")
|