Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ from langchain_chroma import Chroma
|
|
5 |
from langchain_groq import ChatGroq
|
6 |
from langchain.memory import ConversationBufferMemory
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
8 |
|
9 |
# Ensure required environment variables are set
|
10 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
@@ -12,19 +13,17 @@ if not GROQ_API_KEY:
|
|
12 |
st.error("GROQ_API_KEY is not set. Please configure it in Hugging Face Spaces secrets.")
|
13 |
st.stop()
|
14 |
|
15 |
-
# Function to set up the vectorstore
|
16 |
-
def
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
-
#
|
21 |
embeddings = HuggingFaceEmbeddings()
|
22 |
-
|
23 |
-
# Initialize Chroma vectorstore
|
24 |
-
vectorstore = Chroma(
|
25 |
-
persist_directory=persist_directory,
|
26 |
-
embedding_function=embeddings
|
27 |
-
)
|
28 |
return vectorstore
|
29 |
|
30 |
# Function to set up the chat chain
|
@@ -32,7 +31,6 @@ def chat_chain(vectorstore):
|
|
32 |
llm = ChatGroq(model="llama-3.1-70b-versatile",
|
33 |
temperature=0,
|
34 |
groq_api_key=GROQ_API_KEY)
|
35 |
-
|
36 |
retriever = vectorstore.as_retriever()
|
37 |
memory = ConversationBufferMemory(
|
38 |
llm=llm,
|
@@ -60,15 +58,20 @@ st.set_page_config(
|
|
60 |
|
61 |
st.title("π Multi Documents Chatbot")
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
-
st.session_state.chat_history = []
|
66 |
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
|
|
72 |
|
73 |
# Display chat history
|
74 |
for message in st.session_state.chat_history:
|
@@ -76,18 +79,20 @@ for message in st.session_state.chat_history:
|
|
76 |
st.markdown(message["content"])
|
77 |
|
78 |
# User input
|
79 |
-
|
80 |
-
|
81 |
-
if user_input:
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
5 |
from langchain_groq import ChatGroq
|
6 |
from langchain.memory import ConversationBufferMemory
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
8 |
+
from PyPDF2 import PdfReader
|
9 |
|
10 |
# Ensure required environment variables are set
|
11 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
|
|
13 |
st.error("GROQ_API_KEY is not set. Please configure it in Hugging Face Spaces secrets.")
|
14 |
st.stop()
|
15 |
|
16 |
+
# Function to process PDFs and set up the vectorstore
|
17 |
+
def process_and_store_pdfs(uploaded_files):
|
18 |
+
texts = []
|
19 |
+
for uploaded_file in uploaded_files:
|
20 |
+
reader = PdfReader(uploaded_file)
|
21 |
+
for page in reader.pages:
|
22 |
+
texts.append(page.extract_text())
|
23 |
|
24 |
+
# Combine and embed the texts
|
25 |
embeddings = HuggingFaceEmbeddings()
|
26 |
+
vectorstore = Chroma.from_texts(texts, embedding=embeddings)
|
|
|
|
|
|
|
|
|
|
|
27 |
return vectorstore
|
28 |
|
29 |
# Function to set up the chat chain
|
|
|
31 |
llm = ChatGroq(model="llama-3.1-70b-versatile",
|
32 |
temperature=0,
|
33 |
groq_api_key=GROQ_API_KEY)
|
|
|
34 |
retriever = vectorstore.as_retriever()
|
35 |
memory = ConversationBufferMemory(
|
36 |
llm=llm,
|
|
|
58 |
|
59 |
st.title("π Multi Documents Chatbot")
|
60 |
|
61 |
+
# File uploader for PDFs
|
62 |
+
uploaded_files = st.file_uploader("Upload PDF files", accept_multiple_files=True, type=["pdf"])
|
|
|
63 |
|
64 |
+
# Process PDFs and initialize the vectorstore
|
65 |
+
if uploaded_files:
|
66 |
+
with st.spinner("Processing files..."):
|
67 |
+
vectorstore = process_and_store_pdfs(uploaded_files)
|
68 |
+
st.session_state.vectorstore = vectorstore
|
69 |
+
st.session_state.conversational_chain = chat_chain(vectorstore)
|
70 |
+
st.success("Files successfully processed! You can now chat with your documents.")
|
71 |
|
72 |
+
# Initialize chat history
|
73 |
+
if "chat_history" not in st.session_state:
|
74 |
+
st.session_state.chat_history = []
|
75 |
|
76 |
# Display chat history
|
77 |
for message in st.session_state.chat_history:
|
|
|
79 |
st.markdown(message["content"])
|
80 |
|
81 |
# User input
|
82 |
+
if "conversational_chain" in st.session_state:
|
83 |
+
user_input = st.chat_input("Ask AI...")
|
84 |
+
if user_input:
|
85 |
+
st.session_state.chat_history.append({"role": "user", "content": user_input})
|
86 |
+
|
87 |
+
with st.chat_message("user"):
|
88 |
+
st.markdown(user_input)
|
89 |
+
|
90 |
+
with st.chat_message("assistant"):
|
91 |
+
# Generate response
|
92 |
+
response = st.session_state.conversational_chain({"question": user_input})
|
93 |
+
assistant_response = response["answer"]
|
94 |
+
|
95 |
+
st.markdown(assistant_response)
|
96 |
+
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
|
97 |
+
else:
|
98 |
+
st.info("Please upload PDF files to start chatting.")
|