Delete sppech_input_interim.py
Browse files- sppech_input_interim.py +0 -194
sppech_input_interim.py
DELETED
@@ -1,194 +0,0 @@
|
|
1 |
-
Hugging Face's logo
|
2 |
-
Hugging Face
|
3 |
-
Search models, datasets, users...
|
4 |
-
Models
|
5 |
-
Datasets
|
6 |
-
Spaces
|
7 |
-
Posts
|
8 |
-
Docs
|
9 |
-
Enterprise
|
10 |
-
Pricing
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
Spaces:
|
15 |
-
|
16 |
-
DrishtiSharma
|
17 |
-
/
|
18 |
-
chat-w-docs-via-speech-or-text
|
19 |
-
|
20 |
-
|
21 |
-
like
|
22 |
-
1
|
23 |
-
|
24 |
-
Logs
|
25 |
-
App
|
26 |
-
Files
|
27 |
-
Community
|
28 |
-
Settings
|
29 |
-
chat-w-docs-via-speech-or-text
|
30 |
-
/
|
31 |
-
app.py
|
32 |
-
|
33 |
-
DrishtiSharma's picture
|
34 |
-
DrishtiSharma
|
35 |
-
Update app.py
|
36 |
-
230a23e
|
37 |
-
verified
|
38 |
-
3 minutes ago
|
39 |
-
raw
|
40 |
-
|
41 |
-
Copy download link
|
42 |
-
history
|
43 |
-
blame
|
44 |
-
edit
|
45 |
-
delete
|
46 |
-
|
47 |
-
5.38 kB
|
48 |
-
#ref: https://www.youtube.com/watch?v=3ZDVmzlM6Nc
|
49 |
-
|
50 |
-
import os
|
51 |
-
import chromadb
|
52 |
-
import streamlit as st
|
53 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
54 |
-
from langchain_chroma import Chroma
|
55 |
-
from langchain_groq import ChatGroq
|
56 |
-
from langchain.memory import ConversationBufferMemory
|
57 |
-
from langchain.chains import ConversationalRetrievalChain
|
58 |
-
from PyPDF2 import PdfReader
|
59 |
-
from groq import Groq
|
60 |
-
from streamlit_webrtc import webrtc_streamer, AudioProcessorBase, WebRtcMode
|
61 |
-
import av
|
62 |
-
|
63 |
-
# Clear ChromaDB cache to fix tenant issue
|
64 |
-
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
65 |
-
|
66 |
-
# Ensure required environment variables are set
|
67 |
-
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
68 |
-
if not GROQ_API_KEY:
|
69 |
-
st.error("GROQ_API_KEY is not set. Please configure it in environment variables.")
|
70 |
-
st.stop()
|
71 |
-
|
72 |
-
# Initialize Groq Client for transcription and LLM
|
73 |
-
groq_client = Groq(api_key=GROQ_API_KEY)
|
74 |
-
llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, groq_api_key=GROQ_API_KEY)
|
75 |
-
|
76 |
-
# Function to process PDFs and set up the vectorstore
|
77 |
-
def process_and_store_pdfs(uploaded_files):
|
78 |
-
texts = []
|
79 |
-
for uploaded_file in uploaded_files:
|
80 |
-
reader = PdfReader(uploaded_file)
|
81 |
-
for page in reader.pages:
|
82 |
-
texts.append(page.extract_text())
|
83 |
-
|
84 |
-
embeddings = HuggingFaceEmbeddings()
|
85 |
-
vectorstore = Chroma.from_texts(texts, embedding=embeddings, persist_directory="vector_db_dir")
|
86 |
-
return vectorstore
|
87 |
-
|
88 |
-
# Function to set up the chat chain
|
89 |
-
def chat_chain(vectorstore):
|
90 |
-
retriever = vectorstore.as_retriever()
|
91 |
-
memory = ConversationBufferMemory(output_key="answer", memory_key="chat_history", return_messages=True)
|
92 |
-
|
93 |
-
chain = ConversationalRetrievalChain.from_llm(
|
94 |
-
llm=llm,
|
95 |
-
retriever=retriever,
|
96 |
-
chain_type="stuff",
|
97 |
-
memory=memory,
|
98 |
-
verbose=True,
|
99 |
-
return_source_documents=True
|
100 |
-
)
|
101 |
-
return chain
|
102 |
-
|
103 |
-
# Transcribe audio using Groq Whisper
|
104 |
-
def transcribe_audio(file_path):
|
105 |
-
"""Transcribe audio using Groq's Whisper model."""
|
106 |
-
with open(file_path, "rb") as file:
|
107 |
-
transcription = groq_client.audio.transcriptions.create(
|
108 |
-
file=(file_path, file.read()),
|
109 |
-
model="distil-whisper-large-v3-en",
|
110 |
-
response_format="json",
|
111 |
-
language="en"
|
112 |
-
)
|
113 |
-
return transcription.text
|
114 |
-
|
115 |
-
# Audio Processor Class for Recording
|
116 |
-
class AudioProcessor(AudioProcessorBase):
|
117 |
-
def recv(self, frame: av.AudioFrame) -> av.AudioFrame:
|
118 |
-
return frame
|
119 |
-
|
120 |
-
# Streamlit UI
|
121 |
-
st.title("Chat with PDFs via Speech/Text ποΈππ")
|
122 |
-
|
123 |
-
uploaded_files = st.file_uploader("Upload PDF Files", accept_multiple_files=True, type=["pdf"])
|
124 |
-
|
125 |
-
if uploaded_files:
|
126 |
-
vectorstore = process_and_store_pdfs(uploaded_files)
|
127 |
-
chain = chat_chain(vectorstore)
|
128 |
-
st.success("PDFs processed! Ready to chat.")
|
129 |
-
|
130 |
-
input_method = st.radio("Choose Input Method", ["Text Input", "Record Audio", "Upload Audio File"])
|
131 |
-
|
132 |
-
# Text Input Mode
|
133 |
-
if input_method == "Text Input":
|
134 |
-
query = st.text_input("Ask your question:")
|
135 |
-
if query:
|
136 |
-
with st.spinner("Thinking..."):
|
137 |
-
response = chain({"question": query})["answer"]
|
138 |
-
st.write(f"**Response:** {response}")
|
139 |
-
|
140 |
-
# Record Audio
|
141 |
-
elif input_method == "Record Audio":
|
142 |
-
st.write("Record your audio query:")
|
143 |
-
webrtc_ctx = webrtc_streamer(
|
144 |
-
key="record",
|
145 |
-
mode=WebRtcMode.SENDONLY,
|
146 |
-
audio_receiver_size=1024,
|
147 |
-
audio_processor_factory=AudioProcessor,
|
148 |
-
media_stream_constraints={"audio": True, "video": False},
|
149 |
-
)
|
150 |
-
|
151 |
-
if webrtc_ctx.audio_receiver:
|
152 |
-
st.write("Recording...")
|
153 |
-
audio_frames = []
|
154 |
-
while True:
|
155 |
-
frame = webrtc_ctx.audio_receiver.recv()
|
156 |
-
audio_frames.append(frame)
|
157 |
-
if len(audio_frames) > 5: # Stop recording after a few frames
|
158 |
-
break
|
159 |
-
|
160 |
-
# Save the recorded audio
|
161 |
-
audio_file_path = "recorded_audio.wav"
|
162 |
-
with av.open(audio_file_path, "w") as f:
|
163 |
-
for frame in audio_frames:
|
164 |
-
f.write(frame)
|
165 |
-
st.success("Recording complete!")
|
166 |
-
|
167 |
-
# Transcribe and Generate Response
|
168 |
-
st.write("Transcribing audio...")
|
169 |
-
transcription = transcribe_audio(audio_file_path)
|
170 |
-
st.write(f"**You said:** {transcription}")
|
171 |
-
|
172 |
-
with st.spinner("Generating response..."):
|
173 |
-
response = chain({"question": transcription})["answer"]
|
174 |
-
st.write(f"**Response:** {response}")
|
175 |
-
|
176 |
-
# Upload Audio File Mode
|
177 |
-
elif input_method == "Upload Audio File":
|
178 |
-
uploaded_audio = st.file_uploader("Upload an audio file (.wav, .mp3)", type=["wav", "mp3"])
|
179 |
-
if uploaded_audio:
|
180 |
-
audio_file_path = "uploaded_audio.wav"
|
181 |
-
with open(audio_file_path, "wb") as f:
|
182 |
-
f.write(uploaded_audio.read())
|
183 |
-
|
184 |
-
st.audio(audio_file_path, format="audio/wav")
|
185 |
-
st.write("Transcribing audio...")
|
186 |
-
transcription = transcribe_audio(audio_file_path)
|
187 |
-
st.write(f"**You said:** {transcription}")
|
188 |
-
|
189 |
-
with st.spinner("Generating response..."):
|
190 |
-
response = chain({"question": transcription})["answer"]
|
191 |
-
st.write(f"**Response:** {response}")
|
192 |
-
else:
|
193 |
-
st.info("Please upload PDF files to start chatting.")
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|