import os import streamlit as st from langchain_huggingface import HuggingFaceEmbeddings from langchain_chroma import Chroma from langchain_groq import ChatGroq from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain # Ensure required environment variables are set GROQ_API_KEY = os.getenv("GROQ_API_KEY") if not GROQ_API_KEY: st.error("GROQ_API_KEY is not set. Please configure it in Hugging Face Spaces secrets.") st.stop() # Function to set up the vectorstore def setup_vectorstore(): working_dir = os.path.dirname(os.path.abspath(__file__)) persist_directory = f"{working_dir}/vector_db_dir" # Initialize HuggingFace Embeddings embeddings = HuggingFaceEmbeddings() # Initialize Chroma vectorstore vectorstore = Chroma( persist_directory=persist_directory, embedding_function=embeddings ) return vectorstore # Function to set up the chat chain def chat_chain(vectorstore): llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, groq_api_key=GROQ_API_KEY) retriever = vectorstore.as_retriever() memory = ConversationBufferMemory( llm=llm, output_key="answer", memory_key="chat_history", return_messages=True ) chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=retriever, chain_type="stuff", memory=memory, verbose=True, return_source_documents=True ) return chain # Streamlit UI configuration st.set_page_config( page_title="Multi Doc Chat", page_icon="📚", layout="centered" ) st.title("📚 Multi Documents Chatbot") # Initialize session state variables if "chat_history" not in st.session_state: st.session_state.chat_history = [] if "vectorstore" not in st.session_state: st.session_state.vectorstore = setup_vectorstore() if "conversational_chain" not in st.session_state: st.session_state.conversational_chain = chat_chain(st.session_state.vectorstore) # Display chat history for message in st.session_state.chat_history: with st.chat_message(message["role"]): st.markdown(message["content"]) # User input user_input = st.chat_input("Ask AI...") if user_input: st.session_state.chat_history.append({"role": "user", "content": user_input}) with st.chat_message("user"): st.markdown(user_input) with st.chat_message("assistant"): # Generate response response = st.session_state.conversational_chain({"question": user_input}) assistant_response = response["answer"] st.markdown(assistant_response) st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})