#ref: https://www.youtube.com/watch?v=3ZDVmzlM6Nc import os import chromadb from chromadb import Client, Settings import streamlit as st from langchain_huggingface import HuggingFaceEmbeddings from langchain_chroma import Chroma from langchain_groq import ChatGroq from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from PyPDF2 import PdfReader # Clear ChromaDB cache to fix tenant issue chromadb.api.client.SharedSystemClient.clear_system_cache() # Ensure required environment variables are set GROQ_API_KEY = os.getenv("GROQ_API_KEY") if not GROQ_API_KEY: st.error("GROQ_API_KEY is not set. Please configure it in Hugging Face Spaces secrets.") st.stop() # Function to process PDFs and set up the vectorstore def process_and_store_pdfs(uploaded_files): texts = [] for uploaded_file in uploaded_files: reader = PdfReader(uploaded_file) for page in reader.pages: texts.append(page.extract_text()) # Combine and embed the texts embeddings = HuggingFaceEmbeddings() vectorstore = Chroma.from_texts(texts, embedding=embeddings) return vectorstore # Function to set up the chat chain def chat_chain(vectorstore): llm = ChatGroq(model="llama-3.1-70b-versatile", temperature=0, groq_api_key=GROQ_API_KEY) retriever = vectorstore.as_retriever() memory = ConversationBufferMemory( llm=llm, output_key="answer", memory_key="chat_history", return_messages=True ) chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=retriever, chain_type="stuff", memory=memory, verbose=True, return_source_documents=True ) return chain # Streamlit UI configuration st.set_page_config( page_title="Multi Doc Chat", page_icon="📚", layout="centered" ) st.title("Chat with Your Docs📚") # File uploader for PDFs uploaded_files = st.file_uploader("Upload PDF files", accept_multiple_files=True, type=["pdf"]) # Process PDFs and initialize the vectorstore if uploaded_files: with st.spinner("Processing files..."): vectorstore = process_and_store_pdfs(uploaded_files) st.session_state.vectorstore = vectorstore st.session_state.conversational_chain = chat_chain(vectorstore) st.success("Files successfully processed! You can now chat with your documents.") # Initialize chat history if "chat_history" not in st.session_state: st.session_state.chat_history = [] # Display chat history for message in st.session_state.chat_history: with st.chat_message(message["role"]): st.markdown(message["content"]) # User input if "conversational_chain" in st.session_state: user_input = st.chat_input("Ask AI...") if user_input: st.session_state.chat_history.append({"role": "user", "content": user_input}) with st.chat_message("user"): st.markdown(user_input) with st.chat_message("assistant"): # Generate response response = st.session_state.conversational_chain({"question": user_input}) assistant_response = response["answer"] st.markdown(assistant_response) st.session_state.chat_history.append({"role": "assistant", "content": assistant_response}) else: st.info("Please upload PDF files to start chatting.")