Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
4 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
5 |
+
from llama_index.llms.groq import Groq
|
6 |
+
from crewai import Agent, Task, Crew
|
7 |
+
from crewai_tools import LlamaIndexTool
|
8 |
+
from langchain_openai import ChatOpenAI
|
9 |
+
import tempfile
|
10 |
+
|
11 |
+
st.set_page_config(page_title="Financial Analyst App", layout="wide")
|
12 |
+
|
13 |
+
# Environment API Keys
|
14 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
15 |
+
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
16 |
+
|
17 |
+
# Streamlit Input for API Keys
|
18 |
+
st.title("Financial Analysis and Content Generation App")
|
19 |
+
|
20 |
+
if not GROQ_API_KEY or not TAVILY_API_KEY:
|
21 |
+
st.warning("Please enter valid API keys to proceed.")
|
22 |
+
st.stop()
|
23 |
+
|
24 |
+
# File Upload
|
25 |
+
uploaded_file = st.file_uploader("Upload a PDF for Analysis", type="pdf")
|
26 |
+
|
27 |
+
if uploaded_file:
|
28 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
29 |
+
tmp_file.write(uploaded_file.read())
|
30 |
+
pdf_path = tmp_file.name
|
31 |
+
|
32 |
+
st.success("PDF uploaded successfully!")
|
33 |
+
|
34 |
+
# Load and Embed the Document
|
35 |
+
st.subheader("Processing PDF...")
|
36 |
+
reader = SimpleDirectoryReader(input_files=[pdf_path])
|
37 |
+
docs = reader.load_data()
|
38 |
+
st.write("Loaded document content: ", docs[0].text[:500])
|
39 |
+
|
40 |
+
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
41 |
+
index = VectorStoreIndex.from_documents(docs, embed_model=embed_model)
|
42 |
+
query_engine = index.as_query_engine(similarity_top_k=5)
|
43 |
+
|
44 |
+
st.subheader("Setting Up Query Tool")
|
45 |
+
llm = Groq(model="llama3-70b-8192", api_key=GROQ_API_KEY)
|
46 |
+
|
47 |
+
query_tool = LlamaIndexTool.from_query_engine(
|
48 |
+
query_engine,
|
49 |
+
name="Financial Query Tool",
|
50 |
+
description="Use this tool to lookup insights from the uploaded document.",
|
51 |
+
)
|
52 |
+
|
53 |
+
st.success("Query Engine is ready!")
|
54 |
+
|
55 |
+
# Agent Definitions
|
56 |
+
chat_llm = ChatOpenAI(
|
57 |
+
openai_api_base="https://api.groq.com/openai/v1",
|
58 |
+
openai_api_key=GROQ_API_KEY,
|
59 |
+
model="llama3-70b-8192",
|
60 |
+
temperature=0,
|
61 |
+
max_tokens=1000,
|
62 |
+
)
|
63 |
+
|
64 |
+
researcher = Agent(
|
65 |
+
role="Senior Financial Analyst",
|
66 |
+
goal="Uncover insights about the document",
|
67 |
+
backstory="You are an experienced analyst focused on extracting key financial insights.",
|
68 |
+
verbose=True,
|
69 |
+
allow_delegation=False,
|
70 |
+
tools=[query_tool],
|
71 |
+
llm=chat_llm,
|
72 |
+
)
|
73 |
+
|
74 |
+
writer = Agent(
|
75 |
+
role="Tech Content Strategist",
|
76 |
+
goal="Write an engaging blog post based on financial insights",
|
77 |
+
backstory="You transform complex financial information into accessible and engaging narratives.",
|
78 |
+
llm=chat_llm,
|
79 |
+
verbose=True,
|
80 |
+
allow_delegation=False,
|
81 |
+
)
|
82 |
+
|
83 |
+
# Tasks
|
84 |
+
task1 = Task(
|
85 |
+
description="Conduct a comprehensive analysis of the uploaded document.",
|
86 |
+
expected_output="Full analysis report in bullet points",
|
87 |
+
agent=researcher,
|
88 |
+
)
|
89 |
+
|
90 |
+
task2 = Task(
|
91 |
+
description="""Using the analysis insights, create an engaging blog post that highlights key findings
|
92 |
+
in a simple and accessible manner.""",
|
93 |
+
expected_output="A well-structured blog post with at least 4 paragraphs.",
|
94 |
+
agent=writer,
|
95 |
+
)
|
96 |
+
|
97 |
+
# Crew Execution
|
98 |
+
crew = Crew(
|
99 |
+
agents=[researcher, writer],
|
100 |
+
tasks=[task1, task2],
|
101 |
+
verbose=2,
|
102 |
+
)
|
103 |
+
|
104 |
+
if st.button("Kickoff Analysis"):
|
105 |
+
st.subheader("Running Analysis and Content Generation...")
|
106 |
+
result = crew.kickoff()
|
107 |
+
st.subheader("Generated Output:")
|
108 |
+
st.write(result)
|
109 |
+
else:
|
110 |
+
st.info("Please upload a PDF file to proceed.")
|