DrishtiSharma commited on
Commit
324a26b
Β·
verified Β·
1 Parent(s): ccc7ea4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -10
app.py CHANGED
@@ -24,7 +24,7 @@ rag_llm.verbose = True
24
  # Clear ChromaDB cache to fix tenant issue
25
  chromadb.api.client.SharedSystemClient.clear_system_cache()
26
 
27
- st.title("Blah")
28
 
29
  # **Initialize session state variables**
30
  if "pdf_path" not in st.session_state:
@@ -56,7 +56,7 @@ if pdf_source == "Upload a PDF file":
56
  st.session_state.vector_created = False
57
 
58
  elif pdf_source == "Enter a PDF URL":
59
- pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998")
60
  if pdf_url and not st.session_state.get("pdf_loaded", False):
61
  with st.spinner("Downloading PDF..."):
62
  try:
@@ -74,7 +74,7 @@ elif pdf_source == "Enter a PDF URL":
74
  except Exception as e:
75
  st.error(f"Error downloading PDF: {e}")
76
 
77
- # Step 2: Process PDF
78
  if st.session_state.pdf_path and not st.session_state.get("pdf_loaded", False):
79
  with st.spinner("Loading and processing PDF..."):
80
  loader = PDFPlumberLoader(st.session_state.pdf_path)
@@ -83,7 +83,7 @@ if st.session_state.pdf_path and not st.session_state.get("pdf_loaded", False):
83
  st.session_state.pdf_loaded = True # βœ… Prevent re-loading
84
  st.success(f"βœ… **PDF Loaded!** Total Pages: {len(docs)}")
85
 
86
- # Step 3: Chunking
87
  if st.session_state.get("pdf_loaded", False) and not st.session_state.get("chunked", False):
88
  with st.spinner("Chunking the document..."):
89
  model_name = "nomic-ai/modernbert-embed-base"
@@ -94,12 +94,11 @@ if st.session_state.get("pdf_loaded", False) and not st.session_state.get("chunk
94
  st.session_state.chunked = True # βœ… Prevent re-chunking
95
  st.success(f"βœ… **Document Chunked!** Total Chunks: {len(documents)}")
96
 
97
- # Step 4: Setup Vectorstore
98
  if st.session_state.get("chunked", False) and not st.session_state.get("vector_created", False):
99
  with st.spinner("Creating vector store..."):
100
- model_name = "nomic-ai/modernbert-embed-base"
101
- embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
102
-
103
  vector_store = Chroma(
104
  collection_name="deepseek_collection",
105
  collection_metadata={"hnsw:space": "cosine"},
@@ -112,11 +111,11 @@ if st.session_state.get("chunked", False) and not st.session_state.get("vector_c
112
  st.session_state.vector_created = True # βœ… Prevent re-creating vector store
113
  st.success(f"βœ… **Vector Store Created!** Total documents stored: {num_documents}")
114
 
115
- # Step 5: Query Input (this should not trigger previous steps!)
116
  if st.session_state.get("vector_created", False) and st.session_state.get("vector_store", None):
117
  query = st.text_input("πŸ” Enter a Query:")
118
 
119
- if query:
120
  with st.spinner("Retrieving relevant contexts..."):
121
  retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
122
  contexts = retriever.invoke(query)
 
24
  # Clear ChromaDB cache to fix tenant issue
25
  chromadb.api.client.SharedSystemClient.clear_system_cache()
26
 
27
+ st.title("Blah - 1")
28
 
29
  # **Initialize session state variables**
30
  if "pdf_path" not in st.session_state:
 
56
  st.session_state.vector_created = False
57
 
58
  elif pdf_source == "Enter a PDF URL":
59
+ pdf_url = st.text_input("Enter PDF URL:")
60
  if pdf_url and not st.session_state.get("pdf_loaded", False):
61
  with st.spinner("Downloading PDF..."):
62
  try:
 
74
  except Exception as e:
75
  st.error(f"Error downloading PDF: {e}")
76
 
77
+ # Step 2: Process PDF
78
  if st.session_state.pdf_path and not st.session_state.get("pdf_loaded", False):
79
  with st.spinner("Loading and processing PDF..."):
80
  loader = PDFPlumberLoader(st.session_state.pdf_path)
 
83
  st.session_state.pdf_loaded = True # βœ… Prevent re-loading
84
  st.success(f"βœ… **PDF Loaded!** Total Pages: {len(docs)}")
85
 
86
+ # Step 3: Chunking
87
  if st.session_state.get("pdf_loaded", False) and not st.session_state.get("chunked", False):
88
  with st.spinner("Chunking the document..."):
89
  model_name = "nomic-ai/modernbert-embed-base"
 
94
  st.session_state.chunked = True # βœ… Prevent re-chunking
95
  st.success(f"βœ… **Document Chunked!** Total Chunks: {len(documents)}")
96
 
97
+ # Step 4: Setup Vectorstore
98
  if st.session_state.get("chunked", False) and not st.session_state.get("vector_created", False):
99
  with st.spinner("Creating vector store..."):
100
+ embedding_model = HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
101
+
 
102
  vector_store = Chroma(
103
  collection_name="deepseek_collection",
104
  collection_metadata={"hnsw:space": "cosine"},
 
111
  st.session_state.vector_created = True # βœ… Prevent re-creating vector store
112
  st.success(f"βœ… **Vector Store Created!** Total documents stored: {num_documents}")
113
 
114
+ # Step 5: Query Input
115
  if st.session_state.get("vector_created", False) and st.session_state.get("vector_store", None):
116
  query = st.text_input("πŸ” Enter a Query:")
117
 
118
+ if query and st.session_state.get("vector_created", False):
119
  with st.spinner("Retrieving relevant contexts..."):
120
  retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
121
  contexts = retriever.invoke(query)