Spaces:
Build error
Build error
Update interim.py
Browse files- interim.py +73 -126
interim.py
CHANGED
@@ -1,13 +1,15 @@
|
|
1 |
import os
|
|
|
2 |
import requests
|
3 |
import streamlit as st
|
4 |
-
from langchain.chains import
|
5 |
from langchain.prompts import PromptTemplate
|
6 |
from langchain_groq import ChatGroq
|
7 |
from langchain.document_loaders import PDFPlumberLoader
|
8 |
from langchain_experimental.text_splitter import SemanticChunker
|
9 |
from langchain_huggingface import HuggingFaceEmbeddings
|
10 |
from langchain_chroma import Chroma
|
|
|
11 |
|
12 |
# Set API Keys
|
13 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
@@ -16,74 +18,104 @@ os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
|
16 |
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
|
17 |
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
|
18 |
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
# Step 1: Choose PDF Source
|
22 |
-
|
23 |
-
pdf_path = None
|
24 |
-
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0)
|
25 |
|
26 |
if pdf_source == "Upload a PDF file":
|
27 |
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
|
28 |
if uploaded_file:
|
29 |
-
|
|
|
30 |
f.write(uploaded_file.getbuffer())
|
31 |
-
|
|
|
|
|
32 |
|
33 |
elif pdf_source == "Enter a PDF URL":
|
34 |
-
pdf_url = st.text_input("Enter PDF URL:")
|
35 |
-
if pdf_url:
|
36 |
with st.spinner("Downloading PDF..."):
|
37 |
try:
|
38 |
response = requests.get(pdf_url)
|
39 |
if response.status_code == 200:
|
40 |
-
|
|
|
41 |
f.write(response.content)
|
42 |
-
|
|
|
|
|
43 |
st.success("β
PDF Downloaded Successfully!")
|
44 |
else:
|
45 |
st.error("β Failed to download PDF. Check the URL.")
|
46 |
-
pdf_path = None
|
47 |
except Exception as e:
|
48 |
st.error(f"Error downloading PDF: {e}")
|
49 |
-
pdf_path = None
|
50 |
-
else:
|
51 |
-
pdf_path = None
|
52 |
|
53 |
# Step 2: Process PDF
|
54 |
-
if pdf_path:
|
55 |
-
with st.spinner("Loading PDF..."):
|
56 |
-
loader = PDFPlumberLoader(pdf_path)
|
57 |
docs = loader.load()
|
58 |
-
|
59 |
-
|
|
|
60 |
|
61 |
-
|
|
|
62 |
with st.spinner("Chunking the document..."):
|
63 |
model_name = "nomic-ai/modernbert-embed-base"
|
64 |
-
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
|
65 |
-
|
66 |
text_splitter = SemanticChunker(embedding_model)
|
67 |
-
documents = text_splitter.split_documents(
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
# Step 4: Setup Vectorstore
|
72 |
with st.spinner("Creating vector store..."):
|
73 |
vector_store = Chroma(
|
74 |
collection_name="deepseek_collection",
|
75 |
collection_metadata={"hnsw:space": "cosine"},
|
76 |
-
embedding_function=embedding_model
|
|
|
77 |
)
|
78 |
-
vector_store.add_documents(documents)
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
83 |
query = st.text_input("π Enter a Query:")
|
|
|
84 |
if query:
|
85 |
with st.spinner("Retrieving relevant contexts..."):
|
86 |
-
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
87 |
contexts = retriever.invoke(query)
|
88 |
context_texts = [doc.page_content for doc in contexts]
|
89 |
|
@@ -91,96 +123,11 @@ if pdf_path:
|
|
91 |
for i, text in enumerate(context_texts, 1):
|
92 |
st.write(f"**Context {i}:** {text[:500]}...")
|
93 |
|
94 |
-
# Step 6:
|
95 |
-
with st.spinner("Evaluating context relevancy..."):
|
96 |
-
relevancy_prompt = PromptTemplate(
|
97 |
-
input_variables=["retriever_query", "context"],
|
98 |
-
template="""You are an expert judge. Assign relevancy scores (0 or 1) for each context to answer the query.
|
99 |
-
|
100 |
-
CONTEXT LIST:
|
101 |
-
{context}
|
102 |
-
|
103 |
-
QUERY:
|
104 |
-
{retriever_query}
|
105 |
-
|
106 |
-
RESPONSE (JSON):
|
107 |
-
[{{"content": 1, "score": <0 or 1>, "reasoning": "<explanation>"}},
|
108 |
-
{{"content": 2, "score": <0 or 1>, "reasoning": "<explanation>"}},
|
109 |
-
...]"""
|
110 |
-
)
|
111 |
-
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=relevancy_prompt, output_key="relevancy_response")
|
112 |
-
relevancy_response = context_relevancy_chain.invoke({"context": context_texts, "retriever_query": query})
|
113 |
-
|
114 |
-
st.success("β
**Context Relevancy Evaluated!**")
|
115 |
-
st.json(relevancy_response['relevancy_response'])
|
116 |
-
|
117 |
-
# Step 7: Selecting Relevant Contexts
|
118 |
-
with st.spinner("Selecting the most relevant contexts..."):
|
119 |
-
relevant_prompt = PromptTemplate(
|
120 |
-
input_variables=["relevancy_response"],
|
121 |
-
template="""Extract contexts with score 0 from the relevancy response.
|
122 |
-
|
123 |
-
RELEVANCY RESPONSE:
|
124 |
-
{relevancy_response}
|
125 |
-
|
126 |
-
RESPONSE (JSON):
|
127 |
-
[{{"content": <content number>}}]
|
128 |
-
"""
|
129 |
-
)
|
130 |
-
pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
|
131 |
-
relevant_response = pick_relevant_context_chain.invoke({"relevancy_response": relevancy_response['relevancy_response']})
|
132 |
-
|
133 |
-
st.success("β
**Relevant Contexts Selected!**")
|
134 |
-
st.json(relevant_response['context_number'])
|
135 |
-
|
136 |
-
# Step 8: Retrieving Context for Response Generation
|
137 |
-
with st.spinner("Retrieving final context..."):
|
138 |
-
context_prompt = PromptTemplate(
|
139 |
-
input_variables=["context_number", "context"],
|
140 |
-
template="""Extract actual content for the selected context numbers.
|
141 |
-
|
142 |
-
CONTEXT NUMBERS:
|
143 |
-
{context_number}
|
144 |
-
|
145 |
-
CONTENT LIST:
|
146 |
-
{context}
|
147 |
-
|
148 |
-
RESPONSE (JSON):
|
149 |
-
[{{"context_number": <content number>, "relevant_content": "<actual context>"}}]
|
150 |
-
"""
|
151 |
-
)
|
152 |
-
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
|
153 |
-
final_contexts = relevant_contexts_chain.invoke({"context_number": relevant_response['context_number'], "context": context_texts})
|
154 |
-
|
155 |
-
st.success("β
**Final Contexts Retrieved!**")
|
156 |
-
st.json(final_contexts['relevant_contexts'])
|
157 |
-
|
158 |
-
# Step 9: Generate Final Response
|
159 |
with st.spinner("Generating the final answer..."):
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
CONTEXT:
|
168 |
-
{context}
|
169 |
-
|
170 |
-
ANSWER:
|
171 |
-
"""
|
172 |
-
)
|
173 |
-
response_chain = LLMChain(llm=rag_llm, prompt=rag_prompt, output_key="final_response")
|
174 |
-
final_response = response_chain.invoke({"query": query, "context": final_contexts['relevant_contexts']})
|
175 |
-
|
176 |
-
st.success("β
**Final Response Generated!**")
|
177 |
-
st.success(final_response['final_response'])
|
178 |
-
|
179 |
-
# Step 10: Display Workflow Breakdown
|
180 |
-
st.write("π **Workflow Breakdown:**")
|
181 |
-
st.json({
|
182 |
-
"Context Relevancy Evaluation": relevancy_response["relevancy_response"],
|
183 |
-
"Relevant Contexts": relevant_response["context_number"],
|
184 |
-
"Extracted Contexts": final_contexts["relevant_contexts"],
|
185 |
-
"Final Answer": final_response["final_response"]
|
186 |
-
})
|
|
|
1 |
import os
|
2 |
+
import chromadb
|
3 |
import requests
|
4 |
import streamlit as st
|
5 |
+
from langchain.chains import LLMChain
|
6 |
from langchain.prompts import PromptTemplate
|
7 |
from langchain_groq import ChatGroq
|
8 |
from langchain.document_loaders import PDFPlumberLoader
|
9 |
from langchain_experimental.text_splitter import SemanticChunker
|
10 |
from langchain_huggingface import HuggingFaceEmbeddings
|
11 |
from langchain_chroma import Chroma
|
12 |
+
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
13 |
|
14 |
# Set API Keys
|
15 |
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
|
|
18 |
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
|
19 |
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
|
20 |
|
21 |
+
llm_judge.verbose = True
|
22 |
+
rag_llm.verbose = True
|
23 |
+
|
24 |
+
# Clear ChromaDB cache to fix tenant issue
|
25 |
+
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
26 |
+
|
27 |
+
st.title("Blah")
|
28 |
+
|
29 |
+
# **Initialize session state variables**
|
30 |
+
if "pdf_path" not in st.session_state:
|
31 |
+
st.session_state.pdf_path = None
|
32 |
+
if "pdf_loaded" not in st.session_state:
|
33 |
+
st.session_state.pdf_loaded = False
|
34 |
+
if "chunked" not in st.session_state:
|
35 |
+
st.session_state.chunked = False
|
36 |
+
if "vector_created" not in st.session_state:
|
37 |
+
st.session_state.vector_created = False
|
38 |
+
if "vector_store_path" not in st.session_state:
|
39 |
+
st.session_state.vector_store_path = "./chroma_langchain_db"
|
40 |
+
if "vector_store" not in st.session_state:
|
41 |
+
st.session_state.vector_store = None
|
42 |
+
if "documents" not in st.session_state:
|
43 |
+
st.session_state.documents = None
|
44 |
|
45 |
# Step 1: Choose PDF Source
|
46 |
+
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
|
|
|
|
47 |
|
48 |
if pdf_source == "Upload a PDF file":
|
49 |
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
|
50 |
if uploaded_file:
|
51 |
+
st.session_state.pdf_path = "temp.pdf"
|
52 |
+
with open(st.session_state.pdf_path, "wb") as f:
|
53 |
f.write(uploaded_file.getbuffer())
|
54 |
+
st.session_state.pdf_loaded = False
|
55 |
+
st.session_state.chunked = False
|
56 |
+
st.session_state.vector_created = False
|
57 |
|
58 |
elif pdf_source == "Enter a PDF URL":
|
59 |
+
pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998")
|
60 |
+
if pdf_url and st.session_state.pdf_path is None:
|
61 |
with st.spinner("Downloading PDF..."):
|
62 |
try:
|
63 |
response = requests.get(pdf_url)
|
64 |
if response.status_code == 200:
|
65 |
+
st.session_state.pdf_path = "temp.pdf"
|
66 |
+
with open(st.session_state.pdf_path, "wb") as f:
|
67 |
f.write(response.content)
|
68 |
+
st.session_state.pdf_loaded = False
|
69 |
+
st.session_state.chunked = False
|
70 |
+
st.session_state.vector_created = False
|
71 |
st.success("β
PDF Downloaded Successfully!")
|
72 |
else:
|
73 |
st.error("β Failed to download PDF. Check the URL.")
|
|
|
74 |
except Exception as e:
|
75 |
st.error(f"Error downloading PDF: {e}")
|
|
|
|
|
|
|
76 |
|
77 |
# Step 2: Process PDF
|
78 |
+
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
|
79 |
+
with st.spinner("Loading and processing PDF..."):
|
80 |
+
loader = PDFPlumberLoader(st.session_state.pdf_path)
|
81 |
docs = loader.load()
|
82 |
+
st.session_state.documents = docs
|
83 |
+
st.session_state.pdf_loaded = True
|
84 |
+
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
85 |
|
86 |
+
# Step 3: Chunking
|
87 |
+
if st.session_state.pdf_loaded and not st.session_state.chunked and st.session_state.documents:
|
88 |
with st.spinner("Chunking the document..."):
|
89 |
model_name = "nomic-ai/modernbert-embed-base"
|
90 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
|
|
|
91 |
text_splitter = SemanticChunker(embedding_model)
|
92 |
+
documents = text_splitter.split_documents(st.session_state.documents)
|
93 |
+
st.session_state.documents = documents # Store chunked docs
|
94 |
+
st.session_state.chunked = True
|
95 |
+
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
96 |
|
97 |
+
# Step 4: Setup Vectorstore
|
98 |
+
if st.session_state.chunked and not st.session_state.vector_created:
|
|
|
99 |
with st.spinner("Creating vector store..."):
|
100 |
vector_store = Chroma(
|
101 |
collection_name="deepseek_collection",
|
102 |
collection_metadata={"hnsw:space": "cosine"},
|
103 |
+
embedding_function=embedding_model,
|
104 |
+
persist_directory=st.session_state.vector_store_path
|
105 |
)
|
106 |
+
vector_store.add_documents(st.session_state.documents)
|
107 |
+
num_documents = len(vector_store.get()["documents"])
|
108 |
+
st.session_state.vector_store = vector_store
|
109 |
+
st.session_state.vector_created = True
|
110 |
+
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
|
111 |
+
|
112 |
+
# Step 5: Query Input
|
113 |
+
if st.session_state.vector_created and st.session_state.vector_store:
|
114 |
query = st.text_input("π Enter a Query:")
|
115 |
+
|
116 |
if query:
|
117 |
with st.spinner("Retrieving relevant contexts..."):
|
118 |
+
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
119 |
contexts = retriever.invoke(query)
|
120 |
context_texts = [doc.page_content for doc in contexts]
|
121 |
|
|
|
123 |
for i, text in enumerate(context_texts, 1):
|
124 |
st.write(f"**Context {i}:** {text[:500]}...")
|
125 |
|
126 |
+
# **Step 6: Generate Final Response**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
with st.spinner("Generating the final answer..."):
|
128 |
+
final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
|
129 |
+
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
|
130 |
+
final_response = response_chain.invoke({"query": query, "context": context_texts})
|
131 |
+
|
132 |
+
st.subheader("π₯ RAG Final Response")
|
133 |
+
st.success(final_response['final_response'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|