DrishtiSharma commited on
Commit
69d90b6
·
verified ·
1 Parent(s): 2041f76

Delete lab/test.py

Browse files
Files changed (1) hide show
  1. lab/test.py +0 -360
lab/test.py DELETED
@@ -1,360 +0,0 @@
1
- import os
2
- import requests
3
- import streamlit as st
4
- import pickle
5
- from langchain.chains import LLMChain
6
- from langchain.prompts import PromptTemplate
7
- from langchain_groq import ChatGroq
8
- from langchain.document_loaders import PDFPlumberLoader
9
- from langchain_experimental.text_splitter import SemanticChunker
10
- from langchain_huggingface import HuggingFaceEmbeddings
11
- from langchain_chroma import Chroma
12
- from langchain.chains import SequentialChain, LLMChain
13
-
14
- # Set API Keys
15
- os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
16
-
17
- # Load LLM models
18
- llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
19
- rag_llm = ChatGroq(model="mixtral-8x7b-32768")
20
-
21
- llm_judge.verbose = True
22
- rag_llm.verbose = True
23
-
24
- VECTOR_DB_PATH = "/tmp/chroma_db"
25
- CHUNKS_FILE = "/tmp/chunks.pkl"
26
-
27
- # Session State Initialization
28
- if "vector_store" not in st.session_state:
29
- st.session_state.vector_store = None
30
- if "documents" not in st.session_state:
31
- st.session_state.documents = None
32
- if "pdf_path" not in st.session_state:
33
- st.session_state.pdf_path = None
34
- if "pdf_loaded" not in st.session_state:
35
- st.session_state.pdf_loaded = False
36
- if "chunked" not in st.session_state:
37
- st.session_state.chunked = False
38
- if "vector_created" not in st.session_state:
39
- st.session_state.vector_created = False
40
-
41
- st.title("Blah-2")
42
-
43
- # Step 1: Choose PDF Source
44
- pdf_source = st.radio("Upload or provide a link to a PDF:", ["Enter a PDF URL", "Upload a PDF file"], index=0, horizontal=True)
45
-
46
- if pdf_source == "Upload a PDF file":
47
- uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
48
- if uploaded_file:
49
- st.session_state.pdf_path = "temp.pdf"
50
- with open(st.session_state.pdf_path, "wb") as f:
51
- f.write(uploaded_file.getbuffer())
52
- st.session_state.pdf_loaded = False
53
- st.session_state.chunked = False
54
- st.session_state.vector_created = False
55
-
56
- elif pdf_source == "Enter a PDF URL":
57
- pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998", key="pdf_url", on_change=lambda: st.session_state.update(trigger_download=True))
58
-
59
- # Button OR Enter key will trigger download
60
- if st.button("Download and Process PDF") or st.session_state.get("trigger_download", False):
61
- with st.spinner("Downloading PDF..."):
62
- try:
63
- response = requests.get(pdf_url)
64
- if response.status_code == 200:
65
- st.session_state.pdf_path = "temp.pdf"
66
- with open(st.session_state.pdf_path, "wb") as f:
67
- f.write(response.content)
68
-
69
- # Reset states
70
- st.session_state.pdf_loaded = False
71
- st.session_state.chunked = False
72
- st.session_state.vector_created = False
73
- st.session_state.trigger_download = False # Reset trigger
74
-
75
- st.success("✅ PDF Downloaded Successfully!")
76
- else:
77
- st.error("❌ Failed to download PDF. Check the URL.")
78
- except Exception as e:
79
- st.error(f"❌ Error downloading PDF: {e}")
80
-
81
-
82
- # Step 2: Load & Process PDF (Only Once)
83
- if st.session_state.pdf_path and not st.session_state.pdf_loaded:
84
- with st.spinner("Loading PDF..."):
85
- try:
86
- loader = PDFPlumberLoader(st.session_state.pdf_path)
87
- docs = loader.load()
88
- st.session_state.documents = docs
89
- st.session_state.pdf_loaded = True
90
- st.success(f"✅ **PDF Loaded!** Total Pages: {len(docs)}")
91
- except Exception as e:
92
- st.error(f"❌ Error processing PDF: {e}")
93
-
94
- # Load Cached Chunks if Available
95
- def load_chunks():
96
- if os.path.exists(CHUNKS_FILE):
97
- with open(CHUNKS_FILE, "rb") as f:
98
- return pickle.load(f)
99
- return None
100
-
101
- if not st.session_state.chunked: # Ensure chunking only happens once
102
- cached_chunks = load_chunks()
103
- if cached_chunks:
104
- st.session_state.documents = cached_chunks
105
- st.session_state.chunked = True
106
-
107
- # Step 3: Chunking (Only Happens Once)
108
- if st.session_state.pdf_loaded and not st.session_state.chunked:
109
- with st.spinner("Chunking the document..."):
110
- try:
111
- model_name = "nomic-ai/modernbert-embed-base"
112
- embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
113
- text_splitter = SemanticChunker(embedding_model)
114
-
115
- if st.session_state.documents:
116
- documents = text_splitter.split_documents(st.session_state.documents)
117
- st.session_state.documents = documents
118
- st.session_state.chunked = True
119
-
120
- # Save chunks for persistence
121
- with open(CHUNKS_FILE, "wb") as f:
122
- pickle.dump(documents, f)
123
-
124
- st.success(f"✅ **Document Chunked!** Total Chunks: {len(documents)}")
125
- except Exception as e:
126
- st.error(f"❌ Error chunking document: {e}")
127
-
128
- # Step 4: Setup Vectorstore
129
- def load_vector_store():
130
- return Chroma(persist_directory=VECTOR_DB_PATH, collection_name="deepseek_collection", embedding_function=HuggingFaceEmbeddings(model_name="nomic-ai/modernbert-embed-base"))
131
-
132
- if st.session_state.chunked and not st.session_state.vector_created:
133
- with st.spinner("Creating vector store..."):
134
- try:
135
- if st.session_state.vector_store is None: # Prevent unnecessary reloading
136
- st.session_state.vector_store = load_vector_store()
137
-
138
- if len(st.session_state.vector_store.get()["documents"]) == 0: # Prevent duplicate insertions
139
- st.session_state.vector_store.add_documents(st.session_state.documents)
140
-
141
- num_documents = len(st.session_state.vector_store.get()["documents"])
142
- st.session_state.vector_created = True
143
- st.success(f"✅ **Vector Store Created!** Total documents stored: {num_documents}")
144
- except Exception as e:
145
- st.error(f"❌ Error creating vector store: {e}")
146
-
147
- # Debugging Logs
148
- #st.write("📄 **PDF Loaded:**", st.session_state.pdf_loaded)
149
- #st.write("🔹 **Chunked:**", st.session_state.chunked)
150
- #st.write("📂 **Vector Store Created:**", st.session_state.vector_created)
151
-
152
-
153
- # ----------------- Query Input -----------------
154
- query = None
155
-
156
- # Check if a valid PDF URL has been entered (but not processed yet)
157
- pdf_url_entered = bool(st.session_state.get("pdf_url")) # Checks if text is in the input box
158
-
159
- # No PDF Provided Yet
160
- if not st.session_state.pdf_path and not pdf_url_entered:
161
- st.info("📥 **Please upload a PDF or enter a valid URL to proceed.**")
162
-
163
- # PDF URL Exists but Not Processed Yet (Only show if URL exists but hasn't been downloaded)
164
- elif pdf_url_entered and not st.session_state.pdf_loaded:
165
- st.warning("⚠️ **PDF URL detected! Click 'Download and Process PDF' to proceed.**")
166
-
167
- # Processing in Progress
168
- elif st.session_state.get("trigger_download", False) and (
169
- not st.session_state.pdf_loaded or not st.session_state.chunked or not st.session_state.vector_created
170
- ):
171
- st.info("⏳ **Processing your document... Please wait.**")
172
-
173
- # ✅ Step 4: Processing Complete, Ready for Questions
174
- # ----------------- Query Input -----------------
175
- query = None
176
-
177
- # Check if a valid PDF URL has been entered (but not processed yet)
178
- pdf_url_entered = bool(st.session_state.get("pdf_url")) # Checks if text is in the input box
179
-
180
- # No PDF Provided Yet
181
- if not st.session_state.pdf_path and not pdf_url_entered:
182
- st.info("📥 **Please upload a PDF or enter a valid URL to proceed.**")
183
-
184
- # PDF URL Exists but Not Processed Yet (Only show if URL exists but hasn't been downloaded)
185
- elif pdf_url_entered and not st.session_state.pdf_loaded:
186
- st.warning("⚠️ **PDF URL detected! Click 'Download and Process PDF' to proceed.**")
187
-
188
- # Processing in Progress
189
- elif st.session_state.get("trigger_download", False) and (
190
- not st.session_state.pdf_loaded or not st.session_state.chunked or not st.session_state.vector_created
191
- ):
192
- st.info("⏳ **Processing your document... Please wait.**")
193
-
194
- # ✅ Step 4: Processing Complete, Ready for Questions
195
- elif st.session_state.pdf_loaded and st.session_state.chunked and st.session_state.vector_created:
196
- st.success("🎉 **Processing complete! You can now ask questions.**")
197
- query = st.text_input("🔍 **Ask a question about the document:**")
198
-
199
- if query:
200
- with st.spinner("🔄 Retrieving relevant context..."):
201
- retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 3})
202
- contexts = retriever.invoke(query)
203
- # Debugging: Check what was retrieved
204
- #st.write("Retrieved Contexts:", contexts)
205
- #st.write("Number of Contexts:", len(contexts)
206
-
207
- context = [d.page_content for d in contexts]
208
- # Debugging: Check extracted context
209
- #st.write("Extracted Context (page_content):", context)
210
- #st.write("Number of Extracted Contexts:", len(context))
211
-
212
- st.write("📄 **Relevant Passages Retrieved:**")
213
- for idx, doc in enumerate(contexts):
214
- st.write(f"**Excerpt {idx+1}:** {doc.page_content}")
215
-
216
-
217
- relevancy_prompt = """You are an expert judge tasked with evaluating whether the EACH OF THE CONTEXT provided in the CONTEXT LIST is self sufficient to answer the QUERY asked.
218
- Analyze the provided QUERY AND CONTEXT to determine if each Ccontent in the CONTEXT LIST contains Relevant information to answer the QUERY.
219
-
220
- Guidelines:
221
- 1. The content must not introduce new information beyond what's provided in the QUERY.
222
- 2. Pay close attention to the subject of statements. Ensure that attributes, actions, or dates are correctly associated with the right entities (e.g., a person vs. a TV show they star in).
223
- 3. Be vigilant for subtle misattributions or conflations of information, even if the date or other details are correct.
224
- 4. Check that the content in the CONTEXT LIST doesn't oversimplify or generalize information in a way that changes the meaning of the QUERY.
225
-
226
- Analyze the text thoroughly and assign a relevancy score 0 or 1 where:
227
- - 0: The content has all the necessary information to answer the QUERY
228
- - 1: The content does not has the necessary information to answer the QUERY
229
-
230
-
231
- EXAMPLE:
232
- INPUT (for context only, not to be used for faithfulness evaluation):
233
- What is the capital of France?
234
-
235
- CONTEXT:
236
- ['France is a country in Western Europe. Its capital is Paris, which is known for landmarks like the Eiffel Tower.',
237
- 'Mr. Naveen patnaik has been the chief minister of Odisha for consequetive 5 terms']
238
-
239
- OUTPUT:
240
- The Context has sufficient information to answer the query.
241
-
242
- RESPONSE:
243
- {{"score":0}}
244
-
245
-
246
- CONTENT LIST:
247
- {context}
248
-
249
- QUERY:
250
- {retriever_query}
251
- Provide your verdict in JSON format with a single key 'score' and no preamble or explanation:
252
- [{{"content:1,"score": <your score either 0 or 1>,"Reasoning":<why you have chose the score as 0 or 1>}},
253
- {{"content:2,"score": <your score either 0 or 1>,"Reasoning":<why you have chose the score as 0 or 1>}},
254
- ...]
255
- """
256
-
257
- context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query","context"],template=relevancy_prompt)
258
-
259
- relevant_prompt = PromptTemplate(
260
- input_variables=["relevancy_response"],
261
- template="""
262
- Your main task is to analyze the json structure as a part of the Relevancy Response.
263
- Review the Relevancy Response and do the following:-
264
- (1) Look at the Json Structure content
265
- (2) Analyze the 'score' key in the Json Structure content.
266
- (3) pick the value of 'content' key against those 'score' key value which has 0.
267
-
268
- Relevancy Response:
269
- {relevancy_response}
270
-
271
- Provide your verdict in JSON format with a single key 'content number' and no preamble or explanation:
272
- [{{"content":<content number>}}]
273
- """
274
- )
275
-
276
- context_prompt = PromptTemplate(
277
- input_variables=["context_number"],
278
- template="""
279
- Your main task is to analyze the json structure as a part of the Context Number Response and the list of Contexts provided in the 'Content List' and perform the following steps:-
280
- (1) Look at the output from the Relevant Context Picker Agent.
281
- (2) Analyze the 'content' key in the Json Structure format({{"content":<<content_number>>}}).
282
- (3) Retrieve the value of 'content' key and pick up the context corresponding to that element from the Content List provided.
283
- (4) Pass the retrieved context for each corresponing element number referred in the 'Context Number Response'
284
-
285
- Context Number Response:
286
- {context_number}
287
-
288
- Content List:
289
- {context}
290
-
291
- Provide your verdict in JSON format with a two key 'relevant_content' and 'context_number' no preamble or explanation:
292
- [{{"context_number":<content1>,"relevant_content":<content corresponing to that element 1 in the Content List>}},
293
- {{"context_number":<content4>,"relevant_content":<content corresponing to that element 4 in the Content List>}},
294
- ...
295
- ]
296
- """
297
- )
298
-
299
- rag_prompt = """ You are a helpful assistant very profiient in formulating clear and meaningful answers from the context provided.Based on the CONTEXT Provided ,Please formulate
300
- a clear concise and meaningful answer for the QUERY asked.Please refrain from making up your own answer in case the COTEXT provided is not sufficient to answer the QUERY.In such a situation please respond as 'I do not know'.
301
-
302
- QUERY:
303
- {query}
304
-
305
- CONTEXT
306
- {context}
307
-
308
- ANSWER:
309
- """
310
-
311
- context_relevancy_evaluation_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
312
-
313
- response_crisis = context_relevancy_evaluation_chain.invoke({"context":context,"retriever_query":query})
314
-
315
- pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
316
-
317
- relevant_response = pick_relevant_context_chain.invoke({"relevancy_response":response_crisis['relevancy_response']})
318
-
319
- relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
320
-
321
- contexts = relevant_contexts_chain.invoke({"context_number":relevant_response['context_number'],"context":context})
322
-
323
- final_prompt = PromptTemplate(input_variables=["query","context"],template=rag_prompt)
324
-
325
- response_chain = LLMChain(llm=rag_llm,prompt=final_prompt,output_key="final_response")
326
-
327
- response = response_chain.invoke({"query":query,"context":contexts['relevant_contexts']})
328
-
329
- # Orchestrate using SequentialChain
330
- context_management_chain = SequentialChain(
331
- chains=[context_relevancy_evaluation_chain ,pick_relevant_context_chain, relevant_contexts_chain,response_chain],
332
- input_variables=["context","retriever_query","query"],
333
- output_variables=["relevancy_response", "context_number","relevant_contexts","final_response"]
334
- )
335
-
336
- final_output = context_management_chain({"context":context,"retriever_query":query,"query":query})
337
-
338
- #st.subheader('final_output["relevancy_response"]')
339
- #st.write(final_output["relevancy_response"] )
340
-
341
- st.write("📌 **Relevance Analysis:**")
342
- if isinstance(final_output["relevancy_response"], list):
343
- for item in final_output["relevancy_response"]:
344
- st.write(f"✅ **Context {item.get('content', 'N/A')} - Score: {item.get('score', 'N/A')}**")
345
- st.write(f"**Reasoning:** {item.get('Reasoning', 'No explanation provided.')}")
346
- else:
347
- st.write("⚠️ No relevance analysis available.")
348
-
349
-
350
- st.subheader('final_output["context_number"]')
351
- st.write(final_output["context_number"])
352
-
353
- st.subheader('final_output["relevant_contexts"]')
354
- st.write(final_output["relevant_contexts"])
355
-
356
- #st.subheader('final_output["final_response"]')
357
- #st.write(final_output["final_response"])
358
-
359
- st.subheader("📢 **Final Answer:**")
360
- st.write(final_output["final_response"] if final_output["final_response"] else "⚠️ No clear answer found based on retrieved content.")