Spaces:
Build error
Build error
Update lab/metadata_issue_debugging_statements.py
Browse files
lab/metadata_issue_debugging_statements.py
CHANGED
@@ -1,308 +0,0 @@
|
|
1 |
-
Hugging Face's logo
|
2 |
-
Hugging Face
|
3 |
-
Models
|
4 |
-
Datasets
|
5 |
-
Spaces
|
6 |
-
Posts
|
7 |
-
Docs
|
8 |
-
Enterprise
|
9 |
-
Pricing
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
Spaces:
|
14 |
-
|
15 |
-
DrishtiSharma
|
16 |
-
/
|
17 |
-
test-deepseek
|
18 |
-
|
19 |
-
|
20 |
-
like
|
21 |
-
0
|
22 |
-
|
23 |
-
Logs
|
24 |
-
App
|
25 |
-
Files
|
26 |
-
Community
|
27 |
-
Settings
|
28 |
-
test-deepseek
|
29 |
-
/
|
30 |
-
app.py
|
31 |
-
|
32 |
-
DrishtiSharma's picture
|
33 |
-
DrishtiSharma
|
34 |
-
Update app.py
|
35 |
-
a609396
|
36 |
-
verified
|
37 |
-
5 minutes ago
|
38 |
-
raw
|
39 |
-
|
40 |
-
Copy download link
|
41 |
-
history
|
42 |
-
blame
|
43 |
-
edit
|
44 |
-
delete
|
45 |
-
|
46 |
-
11.3 kB
|
47 |
-
import streamlit as st
|
48 |
-
import os
|
49 |
-
import json
|
50 |
-
import requests
|
51 |
-
import pdfplumber
|
52 |
-
import chromadb
|
53 |
-
import re
|
54 |
-
from langchain.document_loaders import PDFPlumberLoader
|
55 |
-
from langchain_huggingface import HuggingFaceEmbeddings
|
56 |
-
from langchain_experimental.text_splitter import SemanticChunker
|
57 |
-
from langchain_chroma import Chroma
|
58 |
-
from langchain.chains import LLMChain
|
59 |
-
from langchain.prompts import PromptTemplate
|
60 |
-
from langchain_groq import ChatGroq
|
61 |
-
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
|
62 |
-
|
63 |
-
# ----------------- Streamlit UI Setup -----------------
|
64 |
-
st.set_page_config(page_title="Blah-1", layout="centered")
|
65 |
-
|
66 |
-
# ----------------- API Keys -----------------
|
67 |
-
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
|
68 |
-
|
69 |
-
# Load LLM models
|
70 |
-
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
|
71 |
-
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
|
72 |
-
|
73 |
-
llm_judge.verbose = True
|
74 |
-
rag_llm.verbose = True
|
75 |
-
|
76 |
-
# Clear ChromaDB cache to fix tenant issue
|
77 |
-
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
78 |
-
|
79 |
-
# st.title("Blah")
|
80 |
-
|
81 |
-
# ----------------- ChromaDB Persistent Directory -----------------
|
82 |
-
CHROMA_DB_DIR = "/mnt/data/chroma_db"
|
83 |
-
os.makedirs(CHROMA_DB_DIR, exist_ok=True)
|
84 |
-
|
85 |
-
# ----------------- Initialize Session State -----------------
|
86 |
-
if "pdf_loaded" not in st.session_state:
|
87 |
-
st.session_state.pdf_loaded = False
|
88 |
-
if "chunked" not in st.session_state:
|
89 |
-
st.session_state.chunked = False
|
90 |
-
if "vector_created" not in st.session_state:
|
91 |
-
st.session_state.vector_created = False
|
92 |
-
if "processed_chunks" not in st.session_state:
|
93 |
-
st.session_state.processed_chunks = None
|
94 |
-
if "vector_store" not in st.session_state:
|
95 |
-
st.session_state.vector_store = None
|
96 |
-
|
97 |
-
# ----------------- Metadata Extraction -----------------
|
98 |
-
# ----------------- Metadata Extraction -----------------
|
99 |
-
def extract_metadata_llm(pdf_path):
|
100 |
-
"""Extracts metadata using LLM instead of regex and logs progress in Streamlit UI."""
|
101 |
-
|
102 |
-
with pdfplumber.open(pdf_path) as pdf:
|
103 |
-
first_page_text = pdf.pages[0].extract_text() or "No text found." if pdf.pages else "No text found."
|
104 |
-
|
105 |
-
# Streamlit Debugging: Show extracted text
|
106 |
-
st.subheader("📄 Extracted First Page Text for Metadata")
|
107 |
-
st.text_area("First Page Text:", first_page_text, height=200)
|
108 |
-
|
109 |
-
# Define metadata prompt
|
110 |
-
metadata_prompt = PromptTemplate(
|
111 |
-
input_variables=["text"],
|
112 |
-
template="""
|
113 |
-
Given the following first page of a research paper, extract metadata **strictly in JSON format**.
|
114 |
-
- If no data is found for a field, return `"Unknown"` instead.
|
115 |
-
- Ensure the output is valid JSON (do not include markdown syntax).
|
116 |
-
|
117 |
-
Example output:
|
118 |
-
{
|
119 |
-
"Title": "Example Paper Title",
|
120 |
-
"Author": "John Doe, Jane Smith",
|
121 |
-
"Emails": "[email protected], [email protected]",
|
122 |
-
"Affiliations": "School of AI, University of Example"
|
123 |
-
}
|
124 |
-
|
125 |
-
Now, extract the metadata from this document:
|
126 |
-
{text}
|
127 |
-
"""
|
128 |
-
)
|
129 |
-
|
130 |
-
# Run LLM Metadata Extraction
|
131 |
-
metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata")
|
132 |
-
|
133 |
-
# Debugging: Log the LLM input
|
134 |
-
st.subheader("🔍 LLM Input for Metadata Extraction")
|
135 |
-
st.json({"text": first_page_text})
|
136 |
-
|
137 |
-
try:
|
138 |
-
metadata_response = metadata_chain.invoke({"text": first_page_text})
|
139 |
-
|
140 |
-
# Debugging: Log raw LLM response
|
141 |
-
st.subheader("🔍 Raw LLM Response")
|
142 |
-
st.json(metadata_response)
|
143 |
-
|
144 |
-
# Handle JSON extraction from LLM response
|
145 |
-
try:
|
146 |
-
metadata_dict = json.loads(metadata_response["metadata"])
|
147 |
-
except json.JSONDecodeError:
|
148 |
-
try:
|
149 |
-
# Attempt to clean up JSON if needed
|
150 |
-
metadata_dict = json.loads(metadata_response["metadata"].strip("```json\n").strip("\n```"))
|
151 |
-
except json.JSONDecodeError:
|
152 |
-
metadata_dict = {
|
153 |
-
"Title": "Unknown",
|
154 |
-
"Author": "Unknown",
|
155 |
-
"Emails": "No emails found",
|
156 |
-
"Affiliations": "No affiliations found"
|
157 |
-
}
|
158 |
-
|
159 |
-
except Exception as e:
|
160 |
-
st.error(f"❌ LLM Metadata Extraction Failed: {e}")
|
161 |
-
metadata_dict = {
|
162 |
-
"Title": "Unknown",
|
163 |
-
"Author": "Unknown",
|
164 |
-
"Emails": "No emails found",
|
165 |
-
"Affiliations": "No affiliations found"
|
166 |
-
}
|
167 |
-
|
168 |
-
# Ensure all required fields exist
|
169 |
-
required_fields = ["Title", "Author", "Emails", "Affiliations"]
|
170 |
-
for field in required_fields:
|
171 |
-
metadata_dict.setdefault(field, "Unknown")
|
172 |
-
|
173 |
-
# Streamlit Debugging: Display Final Extracted Metadata
|
174 |
-
st.subheader("✅ Extracted Metadata")
|
175 |
-
st.json(metadata_dict)
|
176 |
-
|
177 |
-
return metadata_dict
|
178 |
-
|
179 |
-
|
180 |
-
# ----------------- Step 1: Choose PDF Source -----------------
|
181 |
-
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
|
182 |
-
|
183 |
-
if pdf_source == "Upload a PDF file":
|
184 |
-
uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
|
185 |
-
if uploaded_file:
|
186 |
-
st.session_state.pdf_path = "/mnt/data/temp.pdf"
|
187 |
-
with open(st.session_state.pdf_path, "wb") as f:
|
188 |
-
f.write(uploaded_file.getbuffer())
|
189 |
-
st.session_state.pdf_loaded = False
|
190 |
-
st.session_state.chunked = False
|
191 |
-
st.session_state.vector_created = False
|
192 |
-
|
193 |
-
elif pdf_source == "Enter a PDF URL":
|
194 |
-
pdf_url = st.text_input("Enter PDF URL:")
|
195 |
-
if pdf_url and not st.session_state.pdf_loaded:
|
196 |
-
with st.spinner("🔄 Downloading PDF..."):
|
197 |
-
try:
|
198 |
-
response = requests.get(pdf_url)
|
199 |
-
if response.status_code == 200:
|
200 |
-
st.session_state.pdf_path = "/mnt/data/temp.pdf"
|
201 |
-
with open(st.session_state.pdf_path, "wb") as f:
|
202 |
-
f.write(response.content)
|
203 |
-
st.session_state.pdf_loaded = False
|
204 |
-
st.session_state.chunked = False
|
205 |
-
st.session_state.vector_created = False
|
206 |
-
st.success("✅ PDF Downloaded Successfully!")
|
207 |
-
else:
|
208 |
-
st.error("❌ Failed to download PDF. Check the URL.")
|
209 |
-
except Exception as e:
|
210 |
-
st.error(f"Error downloading PDF: {e}")
|
211 |
-
|
212 |
-
|
213 |
-
# ----------------- Process PDF -----------------
|
214 |
-
if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
|
215 |
-
with st.spinner("🔄 Processing document... Please wait."):
|
216 |
-
loader = PDFPlumberLoader(st.session_state.pdf_path)
|
217 |
-
docs = loader.load()
|
218 |
-
st.json(docs[0].metadata)
|
219 |
-
|
220 |
-
# Extract metadata
|
221 |
-
metadata = extract_metadata_llm(st.session_state.pdf_path)
|
222 |
-
|
223 |
-
# Display extracted-metadata
|
224 |
-
if isinstance(metadata, dict):
|
225 |
-
st.subheader("📄 Extracted Document Metadata")
|
226 |
-
st.write(f"**Title:** {metadata.get('Title', 'Unknown')}")
|
227 |
-
st.write(f"**Author:** {metadata.get('Author', 'Unknown')}")
|
228 |
-
st.write(f"**Emails:** {metadata.get('Emails', 'No emails found')}")
|
229 |
-
st.write(f"**Affiliations:** {metadata.get('Affiliations', 'No affiliations found')}")
|
230 |
-
else:
|
231 |
-
st.error("Metadata extraction failed. Check the LLM response format.")
|
232 |
-
|
233 |
-
# Embedding Model
|
234 |
-
model_name = "nomic-ai/modernbert-embed-base"
|
235 |
-
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
|
236 |
-
|
237 |
-
# Convert metadata into a retrievable chunk
|
238 |
-
metadata_doc = {"page_content": metadata, "metadata": {"source": "metadata"}}
|
239 |
-
|
240 |
-
|
241 |
-
# Prevent unnecessary re-chunking
|
242 |
-
if not st.session_state.chunked:
|
243 |
-
text_splitter = SemanticChunker(embedding_model)
|
244 |
-
document_chunks = text_splitter.split_documents(docs)
|
245 |
-
document_chunks.insert(0, metadata_doc) # Insert metadata as a retrievable document
|
246 |
-
st.session_state.processed_chunks = document_chunks
|
247 |
-
st.session_state.chunked = True
|
248 |
-
|
249 |
-
st.session_state.pdf_loaded = True
|
250 |
-
st.success("✅ Document processed and chunked successfully!")
|
251 |
-
|
252 |
-
# ----------------- Setup Vector Store -----------------
|
253 |
-
if not st.session_state.vector_created and st.session_state.processed_chunks:
|
254 |
-
with st.spinner("🔄 Initializing Vector Store..."):
|
255 |
-
st.session_state.vector_store = Chroma(
|
256 |
-
persist_directory=CHROMA_DB_DIR, # <-- Ensures persistence
|
257 |
-
collection_name="deepseek_collection",
|
258 |
-
collection_metadata={"hnsw:space": "cosine"},
|
259 |
-
embedding_function=embedding_model
|
260 |
-
)
|
261 |
-
st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
|
262 |
-
st.session_state.vector_created = True
|
263 |
-
st.success("✅ Vector store initialized successfully!")
|
264 |
-
|
265 |
-
|
266 |
-
# ----------------- Query Input -----------------
|
267 |
-
query = st.text_input("🔍 Ask a question about the document:")
|
268 |
-
|
269 |
-
if query:
|
270 |
-
with st.spinner("🔄 Retrieving relevant context..."):
|
271 |
-
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
272 |
-
retrieved_docs = retriever.invoke(query)
|
273 |
-
context = [d.page_content for d in retrieved_docs]
|
274 |
-
st.success("✅ Context retrieved successfully!")
|
275 |
-
|
276 |
-
# ----------------- Run Individual Chains Explicitly -----------------
|
277 |
-
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
|
278 |
-
relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number")
|
279 |
-
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts")
|
280 |
-
response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
|
281 |
-
|
282 |
-
response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
|
283 |
-
relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]})
|
284 |
-
contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context})
|
285 |
-
final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]})
|
286 |
-
|
287 |
-
# ----------------- Display All Outputs -----------------
|
288 |
-
st.markdown("### Context Relevancy Evaluation")
|
289 |
-
st.json(response_crisis["relevancy_response"])
|
290 |
-
|
291 |
-
st.markdown("### Picked Relevant Contexts")
|
292 |
-
st.json(relevant_response["context_number"])
|
293 |
-
|
294 |
-
st.markdown("### Extracted Relevant Contexts")
|
295 |
-
st.json(contexts["relevant_contexts"])
|
296 |
-
|
297 |
-
st.subheader("context_relevancy_evaluation_chain Statement")
|
298 |
-
st.json(final_response["relevancy_response"])
|
299 |
-
|
300 |
-
st.subheader("pick_relevant_context_chain Statement")
|
301 |
-
st.json(final_response["context_number"])
|
302 |
-
|
303 |
-
st.subheader("relevant_contexts_chain Statement")
|
304 |
-
st.json(final_response["relevant_contexts"])
|
305 |
-
|
306 |
-
st.subheader("RAG Response Statement")
|
307 |
-
st.json(final_response["final_response"])
|
308 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|