DrishtiSharma commited on
Commit
8f5642b
·
verified ·
1 Parent(s): 1b02f28

Update lab/metadata_issue_debugging_statements.py

Browse files
lab/metadata_issue_debugging_statements.py CHANGED
@@ -1,308 +0,0 @@
1
- Hugging Face's logo
2
- Hugging Face
3
- Models
4
- Datasets
5
- Spaces
6
- Posts
7
- Docs
8
- Enterprise
9
- Pricing
10
-
11
-
12
-
13
- Spaces:
14
-
15
- DrishtiSharma
16
- /
17
- test-deepseek
18
-
19
-
20
- like
21
- 0
22
-
23
- Logs
24
- App
25
- Files
26
- Community
27
- Settings
28
- test-deepseek
29
- /
30
- app.py
31
-
32
- DrishtiSharma's picture
33
- DrishtiSharma
34
- Update app.py
35
- a609396
36
- verified
37
- 5 minutes ago
38
- raw
39
-
40
- Copy download link
41
- history
42
- blame
43
- edit
44
- delete
45
-
46
- 11.3 kB
47
- import streamlit as st
48
- import os
49
- import json
50
- import requests
51
- import pdfplumber
52
- import chromadb
53
- import re
54
- from langchain.document_loaders import PDFPlumberLoader
55
- from langchain_huggingface import HuggingFaceEmbeddings
56
- from langchain_experimental.text_splitter import SemanticChunker
57
- from langchain_chroma import Chroma
58
- from langchain.chains import LLMChain
59
- from langchain.prompts import PromptTemplate
60
- from langchain_groq import ChatGroq
61
- from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
62
-
63
- # ----------------- Streamlit UI Setup -----------------
64
- st.set_page_config(page_title="Blah-1", layout="centered")
65
-
66
- # ----------------- API Keys -----------------
67
- os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
68
-
69
- # Load LLM models
70
- llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
71
- rag_llm = ChatGroq(model="mixtral-8x7b-32768")
72
-
73
- llm_judge.verbose = True
74
- rag_llm.verbose = True
75
-
76
- # Clear ChromaDB cache to fix tenant issue
77
- chromadb.api.client.SharedSystemClient.clear_system_cache()
78
-
79
- # st.title("Blah")
80
-
81
- # ----------------- ChromaDB Persistent Directory -----------------
82
- CHROMA_DB_DIR = "/mnt/data/chroma_db"
83
- os.makedirs(CHROMA_DB_DIR, exist_ok=True)
84
-
85
- # ----------------- Initialize Session State -----------------
86
- if "pdf_loaded" not in st.session_state:
87
- st.session_state.pdf_loaded = False
88
- if "chunked" not in st.session_state:
89
- st.session_state.chunked = False
90
- if "vector_created" not in st.session_state:
91
- st.session_state.vector_created = False
92
- if "processed_chunks" not in st.session_state:
93
- st.session_state.processed_chunks = None
94
- if "vector_store" not in st.session_state:
95
- st.session_state.vector_store = None
96
-
97
- # ----------------- Metadata Extraction -----------------
98
- # ----------------- Metadata Extraction -----------------
99
- def extract_metadata_llm(pdf_path):
100
- """Extracts metadata using LLM instead of regex and logs progress in Streamlit UI."""
101
-
102
- with pdfplumber.open(pdf_path) as pdf:
103
- first_page_text = pdf.pages[0].extract_text() or "No text found." if pdf.pages else "No text found."
104
-
105
- # Streamlit Debugging: Show extracted text
106
- st.subheader("📄 Extracted First Page Text for Metadata")
107
- st.text_area("First Page Text:", first_page_text, height=200)
108
-
109
- # Define metadata prompt
110
- metadata_prompt = PromptTemplate(
111
- input_variables=["text"],
112
- template="""
113
- Given the following first page of a research paper, extract metadata **strictly in JSON format**.
114
- - If no data is found for a field, return `"Unknown"` instead.
115
- - Ensure the output is valid JSON (do not include markdown syntax).
116
-
117
- Example output:
118
- {
119
- "Title": "Example Paper Title",
120
- "Author": "John Doe, Jane Smith",
121
122
- "Affiliations": "School of AI, University of Example"
123
- }
124
-
125
- Now, extract the metadata from this document:
126
- {text}
127
- """
128
- )
129
-
130
- # Run LLM Metadata Extraction
131
- metadata_chain = LLMChain(llm=llm_judge, prompt=metadata_prompt, output_key="metadata")
132
-
133
- # Debugging: Log the LLM input
134
- st.subheader("🔍 LLM Input for Metadata Extraction")
135
- st.json({"text": first_page_text})
136
-
137
- try:
138
- metadata_response = metadata_chain.invoke({"text": first_page_text})
139
-
140
- # Debugging: Log raw LLM response
141
- st.subheader("🔍 Raw LLM Response")
142
- st.json(metadata_response)
143
-
144
- # Handle JSON extraction from LLM response
145
- try:
146
- metadata_dict = json.loads(metadata_response["metadata"])
147
- except json.JSONDecodeError:
148
- try:
149
- # Attempt to clean up JSON if needed
150
- metadata_dict = json.loads(metadata_response["metadata"].strip("```json\n").strip("\n```"))
151
- except json.JSONDecodeError:
152
- metadata_dict = {
153
- "Title": "Unknown",
154
- "Author": "Unknown",
155
- "Emails": "No emails found",
156
- "Affiliations": "No affiliations found"
157
- }
158
-
159
- except Exception as e:
160
- st.error(f"❌ LLM Metadata Extraction Failed: {e}")
161
- metadata_dict = {
162
- "Title": "Unknown",
163
- "Author": "Unknown",
164
- "Emails": "No emails found",
165
- "Affiliations": "No affiliations found"
166
- }
167
-
168
- # Ensure all required fields exist
169
- required_fields = ["Title", "Author", "Emails", "Affiliations"]
170
- for field in required_fields:
171
- metadata_dict.setdefault(field, "Unknown")
172
-
173
- # Streamlit Debugging: Display Final Extracted Metadata
174
- st.subheader("✅ Extracted Metadata")
175
- st.json(metadata_dict)
176
-
177
- return metadata_dict
178
-
179
-
180
- # ----------------- Step 1: Choose PDF Source -----------------
181
- pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
182
-
183
- if pdf_source == "Upload a PDF file":
184
- uploaded_file = st.file_uploader("Upload your PDF file", type=["pdf"])
185
- if uploaded_file:
186
- st.session_state.pdf_path = "/mnt/data/temp.pdf"
187
- with open(st.session_state.pdf_path, "wb") as f:
188
- f.write(uploaded_file.getbuffer())
189
- st.session_state.pdf_loaded = False
190
- st.session_state.chunked = False
191
- st.session_state.vector_created = False
192
-
193
- elif pdf_source == "Enter a PDF URL":
194
- pdf_url = st.text_input("Enter PDF URL:")
195
- if pdf_url and not st.session_state.pdf_loaded:
196
- with st.spinner("🔄 Downloading PDF..."):
197
- try:
198
- response = requests.get(pdf_url)
199
- if response.status_code == 200:
200
- st.session_state.pdf_path = "/mnt/data/temp.pdf"
201
- with open(st.session_state.pdf_path, "wb") as f:
202
- f.write(response.content)
203
- st.session_state.pdf_loaded = False
204
- st.session_state.chunked = False
205
- st.session_state.vector_created = False
206
- st.success("✅ PDF Downloaded Successfully!")
207
- else:
208
- st.error("❌ Failed to download PDF. Check the URL.")
209
- except Exception as e:
210
- st.error(f"Error downloading PDF: {e}")
211
-
212
-
213
- # ----------------- Process PDF -----------------
214
- if not st.session_state.pdf_loaded and "pdf_path" in st.session_state:
215
- with st.spinner("🔄 Processing document... Please wait."):
216
- loader = PDFPlumberLoader(st.session_state.pdf_path)
217
- docs = loader.load()
218
- st.json(docs[0].metadata)
219
-
220
- # Extract metadata
221
- metadata = extract_metadata_llm(st.session_state.pdf_path)
222
-
223
- # Display extracted-metadata
224
- if isinstance(metadata, dict):
225
- st.subheader("📄 Extracted Document Metadata")
226
- st.write(f"**Title:** {metadata.get('Title', 'Unknown')}")
227
- st.write(f"**Author:** {metadata.get('Author', 'Unknown')}")
228
- st.write(f"**Emails:** {metadata.get('Emails', 'No emails found')}")
229
- st.write(f"**Affiliations:** {metadata.get('Affiliations', 'No affiliations found')}")
230
- else:
231
- st.error("Metadata extraction failed. Check the LLM response format.")
232
-
233
- # Embedding Model
234
- model_name = "nomic-ai/modernbert-embed-base"
235
- embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={"device": "cpu"}, encode_kwargs={'normalize_embeddings': False})
236
-
237
- # Convert metadata into a retrievable chunk
238
- metadata_doc = {"page_content": metadata, "metadata": {"source": "metadata"}}
239
-
240
-
241
- # Prevent unnecessary re-chunking
242
- if not st.session_state.chunked:
243
- text_splitter = SemanticChunker(embedding_model)
244
- document_chunks = text_splitter.split_documents(docs)
245
- document_chunks.insert(0, metadata_doc) # Insert metadata as a retrievable document
246
- st.session_state.processed_chunks = document_chunks
247
- st.session_state.chunked = True
248
-
249
- st.session_state.pdf_loaded = True
250
- st.success("✅ Document processed and chunked successfully!")
251
-
252
- # ----------------- Setup Vector Store -----------------
253
- if not st.session_state.vector_created and st.session_state.processed_chunks:
254
- with st.spinner("🔄 Initializing Vector Store..."):
255
- st.session_state.vector_store = Chroma(
256
- persist_directory=CHROMA_DB_DIR, # <-- Ensures persistence
257
- collection_name="deepseek_collection",
258
- collection_metadata={"hnsw:space": "cosine"},
259
- embedding_function=embedding_model
260
- )
261
- st.session_state.vector_store.add_documents(st.session_state.processed_chunks)
262
- st.session_state.vector_created = True
263
- st.success("✅ Vector store initialized successfully!")
264
-
265
-
266
- # ----------------- Query Input -----------------
267
- query = st.text_input("🔍 Ask a question about the document:")
268
-
269
- if query:
270
- with st.spinner("🔄 Retrieving relevant context..."):
271
- retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
272
- retrieved_docs = retriever.invoke(query)
273
- context = [d.page_content for d in retrieved_docs]
274
- st.success("✅ Context retrieved successfully!")
275
-
276
- # ----------------- Run Individual Chains Explicitly -----------------
277
- context_relevancy_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt), output_key="relevancy_response")
278
- relevant_context_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt), output_key="context_number")
279
- relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=PromptTemplate(input_variables=["context_number", "context"], template=response_synth), output_key="relevant_contexts")
280
- response_chain = LLMChain(llm=rag_llm, prompt=PromptTemplate(input_variables=["query", "context"], template=rag_prompt), output_key="final_response")
281
-
282
- response_crisis = context_relevancy_chain.invoke({"context": context, "retriever_query": query})
283
- relevant_response = relevant_context_chain.invoke({"relevancy_response": response_crisis["relevancy_response"]})
284
- contexts = relevant_contexts_chain.invoke({"context_number": relevant_response["context_number"], "context": context})
285
- final_response = response_chain.invoke({"query": query, "context": contexts["relevant_contexts"]})
286
-
287
- # ----------------- Display All Outputs -----------------
288
- st.markdown("### Context Relevancy Evaluation")
289
- st.json(response_crisis["relevancy_response"])
290
-
291
- st.markdown("### Picked Relevant Contexts")
292
- st.json(relevant_response["context_number"])
293
-
294
- st.markdown("### Extracted Relevant Contexts")
295
- st.json(contexts["relevant_contexts"])
296
-
297
- st.subheader("context_relevancy_evaluation_chain Statement")
298
- st.json(final_response["relevancy_response"])
299
-
300
- st.subheader("pick_relevant_context_chain Statement")
301
- st.json(final_response["context_number"])
302
-
303
- st.subheader("relevant_contexts_chain Statement")
304
- st.json(final_response["relevant_contexts"])
305
-
306
- st.subheader("RAG Response Statement")
307
- st.json(final_response["final_response"])
308
-