File size: 8,090 Bytes
739d571
c05a5d6
4aa3085
739d571
0dad5c5
739d571
 
 
 
 
552b3c1
739d571
 
 
 
 
 
 
 
2e95a3a
739d571
 
 
c0f8ffc
552b3c1
d4e5d68
c05a5d6
067b02a
 
739d571
 
 
 
 
 
 
 
c05a5d6
739d571
 
 
 
 
 
 
 
 
 
 
 
 
96ee009
739d571
96ee009
 
c05a5d6
96ee009
 
 
c05a5d6
 
96ee009
 
 
 
 
 
 
 
739d571
 
 
c0f8ffc
739d571
 
 
 
 
 
 
 
 
 
 
 
 
c05a5d6
739d571
 
 
552b3c1
2ec3a71
 
4ddba75
 
552b3c1
 
 
 
 
 
 
099f4d6
552b3c1
 
 
c05a5d6
552b3c1
 
 
 
 
739d571
 
 
 
552b3c1
 
 
c05a5d6
739d571
 
c05a5d6
 
552b3c1
 
 
 
 
c05a5d6
739d571
 
 
 
 
 
 
 
 
c05a5d6
739d571
 
 
552b3c1
739d571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
552b3c1
739d571
 
 
39968ad
739d571
 
 
 
c05a5d6
739d571
 
 
 
 
 
 
 
 
 
 
 
 
 
c05a5d6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import io
import chromadb
import streamlit as st
import matplotlib.pyplot as plt
from langchain_openai import ChatOpenAI
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool
from langchain_community.document_loaders import DirectoryLoader, TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import StateGraph, END
from langchain_core.documents import Document
from typing import Annotated, Sequence, TypedDict
import functools
import operator
from langchain_core.tools import tool
from glob import glob

# Clear ChromaDB cache
chromadb.api.client.SharedSystemClient.clear_system_cache()

# Load environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")

if not OPENAI_API_KEY or not TAVILY_API_KEY:
    st.error("Please set OPENAI_API_KEY and TAVILY_API_KEY in your environment variables.")
    st.stop()

# Initialize LLM
llm = ChatOpenAI(model="gpt-4-1106-preview", openai_api_key=OPENAI_API_KEY)

# Utility Functions
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
    prompt = ChatPromptTemplate.from_messages([
        ("system", system_prompt),
        MessagesPlaceholder(variable_name="messages"),
        MessagesPlaceholder(variable_name="agent_scratchpad"),
    ])
    agent = create_openai_tools_agent(llm, tools, prompt)
    return AgentExecutor(agent=agent, tools=tools)

def agent_node(state, agent, name):
    # Run the agent and get its output
    result = agent.invoke(state)
    output_content = result["output"]
    
    # Check if Python code generates a graph
    if "matplotlib" in output_content or "plt." in output_content:
        exec_locals = {}
        try:
            exec(output_content, {}, exec_locals)
            fig = plt.gcf()
            buf = io.BytesIO()
            fig.savefig(buf, format="png")
            buf.seek(0)
            st.session_state.graph_image = buf
        except Exception as e:
            output_content += f"\nError: {str(e)}"
    
    return {"messages": [HumanMessage(content=output_content, name=name)]}

@tool
def RAG(state):
    """Use this tool to execute RAG. If the question is related to Japan or Sports, this tool retrieves the results."""
    st.session_state.outputs.append('-> Calling RAG ->')
    question = state
    template = """Answer the question based only on the following context:\n{context}\nQuestion: {question}"""
    prompt = ChatPromptTemplate.from_template(template)
    retrieval_chain = (
        {"context": retriever, "question": RunnablePassthrough()} |
        prompt |
        llm |
        StrOutputParser()
    )
    result = retrieval_chain.invoke(question)
    return result

# Tools Setup
tavily_tool = TavilySearchResults(max_results=5, tavily_api_key=TAVILY_API_KEY)
python_repl_tool = PythonREPLTool()

# Streamlit UI
# Sidebar with References
st.sidebar.title("References")
st.sidebar.markdown("1. [Multi-Agent with Supervisor](https://github.com/aritrasen87/LLM_RAG_Model_Deployment/blob/main/LangGraph_03_MultiAgent_With_Supervisor.ipynb)")
st.title("Multi-Agent with Supervisor")

example_questions = [
    "What is James McIlroy aiming for in sports?",
    "Fetch India's GDP over the past 5 years and draw a line graph.",
    "Fetch Japan's GDP over the past 4 years from RAG, then draw a line graph."
]

source_files = glob("sources/*.txt")
selected_files = st.multiselect("Select files from the source directory:", source_files, default=source_files[:2])
uploaded_files = st.file_uploader("Or upload your TXT files:", accept_multiple_files=True, type=['txt'])

# Document Handling
all_docs = []
if selected_files:
    for file_path in selected_files:
        loader = TextLoader(file_path)
        all_docs.extend(loader.load())

if uploaded_files:
    for uploaded_file in uploaded_files:
        content = uploaded_file.read().decode("utf-8")
        all_docs.append(Document(page_content=content, metadata={"name": uploaded_file.name}))

if not all_docs:
    st.warning("Please select files or upload TXT files.")
    st.stop()

# Document Splitting and Embedding
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
split_docs = text_splitter.split_documents(all_docs)
embeddings = HuggingFaceBgeEmbeddings(model_name="BAAI/bge-base-en-v1.5", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
db = Chroma.from_documents(split_docs, embeddings)
retriever = db.as_retriever(search_kwargs={"k": 4})

# Agents
research_agent = create_agent(llm, [tavily_tool], "You are a web researcher.")
code_agent = create_agent(llm, [python_repl_tool], "You may generate safe python code to analyze data and generate charts using matplotlib.")
RAG_agent = create_agent(llm, [RAG], "Use this tool when questions are related to Japan or Sports category.")

research_node = functools.partial(agent_node, agent=research_agent, name="Researcher")
code_node = functools.partial(agent_node, agent=code_agent, name="Coder")
rag_node = functools.partial(agent_node, agent=RAG_agent, name="RAG")

members = ["RAG", "Researcher", "Coder"]
system_prompt = "You are a supervisor managing these workers: {members}. Respond with the next worker or FINISH."
options = ["FINISH"] + members
function_def = {
    "name": "route", "description": "Select the next role.",
    "parameters": {"title": "routeSchema", "type": "object", "properties": {"next": {"anyOf": [{"enum": options}]}}, "required": ["next"]}
}
prompt = ChatPromptTemplate.from_messages([
    ("system", system_prompt),
    MessagesPlaceholder(variable_name="messages"),
    ("system", "Given the conversation above, who should act next? Select one of: {options}"),
]).partial(options=str(options), members=", ".join(members))
supervisor_chain = (prompt | llm.bind_functions(functions=[function_def], function_call="route") | JsonOutputFunctionsParser())

class AgentState(TypedDict):
    messages: Annotated[Sequence[BaseMessage], operator.add]
    next: str

workflow = StateGraph(AgentState)
workflow.add_node("Researcher", research_node)
workflow.add_node("Coder", code_node)
workflow.add_node("RAG", rag_node)
workflow.add_node("supervisor", supervisor_chain)

for member in members:
    workflow.add_edge(member, "supervisor")
conditional_map = {k: k for k in members}
conditional_map["FINISH"] = END
workflow.add_conditional_edges("supervisor", lambda x: x["next"], conditional_map)
workflow.set_entry_point("supervisor")
graph = workflow.compile()

# Workflow Execution
if 'outputs' not in st.session_state:
    st.session_state.outputs = []

user_input = st.text_area("Enter your task or question:", value=example_questions[0])

def run_workflow(task):
    st.session_state.outputs.clear()
    st.session_state.outputs.append(f"User Input: {task}")
    st.session_state.graph_image = None
    for state in graph.stream({"messages": [HumanMessage(content=task)]}):
        if "__end__" not in state:
            st.session_state.outputs.append(str(state))
            st.session_state.outputs.append("----")

if st.button("Run Workflow"):
    if user_input:
        run_workflow(user_input)
    else:
        st.warning("Please enter a task or question.")

st.subheader("Workflow Output:")
for output in st.session_state.outputs:
    st.text(output)

if "graph_image" in st.session_state and st.session_state.graph_image:
    st.subheader("Generated Graph:")
    st.image(st.session_state.graph_image, caption="Generated Line Graph", use_column_width=True)