File size: 8,090 Bytes
739d571 c05a5d6 4aa3085 739d571 0dad5c5 739d571 552b3c1 739d571 2e95a3a 739d571 c0f8ffc 552b3c1 d4e5d68 c05a5d6 067b02a 739d571 c05a5d6 739d571 96ee009 739d571 96ee009 c05a5d6 96ee009 c05a5d6 96ee009 739d571 c0f8ffc 739d571 c05a5d6 739d571 552b3c1 2ec3a71 4ddba75 552b3c1 099f4d6 552b3c1 c05a5d6 552b3c1 739d571 552b3c1 c05a5d6 739d571 c05a5d6 552b3c1 c05a5d6 739d571 c05a5d6 739d571 552b3c1 739d571 552b3c1 739d571 39968ad 739d571 c05a5d6 739d571 c05a5d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
import io
import chromadb
import streamlit as st
import matplotlib.pyplot as plt
from langchain_openai import ChatOpenAI
from langchain.agents import AgentExecutor, create_openai_tools_agent
from langchain_core.messages import BaseMessage, HumanMessage
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_experimental.tools import PythonREPLTool
from langchain_community.document_loaders import DirectoryLoader, TextLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain_core.output_parsers import StrOutputParser
from langchain_core.runnables import RunnablePassthrough
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langgraph.graph import StateGraph, END
from langchain_core.documents import Document
from typing import Annotated, Sequence, TypedDict
import functools
import operator
from langchain_core.tools import tool
from glob import glob
# Clear ChromaDB cache
chromadb.api.client.SharedSystemClient.clear_system_cache()
# Load environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
if not OPENAI_API_KEY or not TAVILY_API_KEY:
st.error("Please set OPENAI_API_KEY and TAVILY_API_KEY in your environment variables.")
st.stop()
# Initialize LLM
llm = ChatOpenAI(model="gpt-4-1106-preview", openai_api_key=OPENAI_API_KEY)
# Utility Functions
def create_agent(llm: ChatOpenAI, tools: list, system_prompt: str):
prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
MessagesPlaceholder(variable_name="agent_scratchpad"),
])
agent = create_openai_tools_agent(llm, tools, prompt)
return AgentExecutor(agent=agent, tools=tools)
def agent_node(state, agent, name):
# Run the agent and get its output
result = agent.invoke(state)
output_content = result["output"]
# Check if Python code generates a graph
if "matplotlib" in output_content or "plt." in output_content:
exec_locals = {}
try:
exec(output_content, {}, exec_locals)
fig = plt.gcf()
buf = io.BytesIO()
fig.savefig(buf, format="png")
buf.seek(0)
st.session_state.graph_image = buf
except Exception as e:
output_content += f"\nError: {str(e)}"
return {"messages": [HumanMessage(content=output_content, name=name)]}
@tool
def RAG(state):
"""Use this tool to execute RAG. If the question is related to Japan or Sports, this tool retrieves the results."""
st.session_state.outputs.append('-> Calling RAG ->')
question = state
template = """Answer the question based only on the following context:\n{context}\nQuestion: {question}"""
prompt = ChatPromptTemplate.from_template(template)
retrieval_chain = (
{"context": retriever, "question": RunnablePassthrough()} |
prompt |
llm |
StrOutputParser()
)
result = retrieval_chain.invoke(question)
return result
# Tools Setup
tavily_tool = TavilySearchResults(max_results=5, tavily_api_key=TAVILY_API_KEY)
python_repl_tool = PythonREPLTool()
# Streamlit UI
# Sidebar with References
st.sidebar.title("References")
st.sidebar.markdown("1. [Multi-Agent with Supervisor](https://github.com/aritrasen87/LLM_RAG_Model_Deployment/blob/main/LangGraph_03_MultiAgent_With_Supervisor.ipynb)")
st.title("Multi-Agent with Supervisor")
example_questions = [
"What is James McIlroy aiming for in sports?",
"Fetch India's GDP over the past 5 years and draw a line graph.",
"Fetch Japan's GDP over the past 4 years from RAG, then draw a line graph."
]
source_files = glob("sources/*.txt")
selected_files = st.multiselect("Select files from the source directory:", source_files, default=source_files[:2])
uploaded_files = st.file_uploader("Or upload your TXT files:", accept_multiple_files=True, type=['txt'])
# Document Handling
all_docs = []
if selected_files:
for file_path in selected_files:
loader = TextLoader(file_path)
all_docs.extend(loader.load())
if uploaded_files:
for uploaded_file in uploaded_files:
content = uploaded_file.read().decode("utf-8")
all_docs.append(Document(page_content=content, metadata={"name": uploaded_file.name}))
if not all_docs:
st.warning("Please select files or upload TXT files.")
st.stop()
# Document Splitting and Embedding
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10)
split_docs = text_splitter.split_documents(all_docs)
embeddings = HuggingFaceBgeEmbeddings(model_name="BAAI/bge-base-en-v1.5", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
db = Chroma.from_documents(split_docs, embeddings)
retriever = db.as_retriever(search_kwargs={"k": 4})
# Agents
research_agent = create_agent(llm, [tavily_tool], "You are a web researcher.")
code_agent = create_agent(llm, [python_repl_tool], "You may generate safe python code to analyze data and generate charts using matplotlib.")
RAG_agent = create_agent(llm, [RAG], "Use this tool when questions are related to Japan or Sports category.")
research_node = functools.partial(agent_node, agent=research_agent, name="Researcher")
code_node = functools.partial(agent_node, agent=code_agent, name="Coder")
rag_node = functools.partial(agent_node, agent=RAG_agent, name="RAG")
members = ["RAG", "Researcher", "Coder"]
system_prompt = "You are a supervisor managing these workers: {members}. Respond with the next worker or FINISH."
options = ["FINISH"] + members
function_def = {
"name": "route", "description": "Select the next role.",
"parameters": {"title": "routeSchema", "type": "object", "properties": {"next": {"anyOf": [{"enum": options}]}}, "required": ["next"]}
}
prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
MessagesPlaceholder(variable_name="messages"),
("system", "Given the conversation above, who should act next? Select one of: {options}"),
]).partial(options=str(options), members=", ".join(members))
supervisor_chain = (prompt | llm.bind_functions(functions=[function_def], function_call="route") | JsonOutputFunctionsParser())
class AgentState(TypedDict):
messages: Annotated[Sequence[BaseMessage], operator.add]
next: str
workflow = StateGraph(AgentState)
workflow.add_node("Researcher", research_node)
workflow.add_node("Coder", code_node)
workflow.add_node("RAG", rag_node)
workflow.add_node("supervisor", supervisor_chain)
for member in members:
workflow.add_edge(member, "supervisor")
conditional_map = {k: k for k in members}
conditional_map["FINISH"] = END
workflow.add_conditional_edges("supervisor", lambda x: x["next"], conditional_map)
workflow.set_entry_point("supervisor")
graph = workflow.compile()
# Workflow Execution
if 'outputs' not in st.session_state:
st.session_state.outputs = []
user_input = st.text_area("Enter your task or question:", value=example_questions[0])
def run_workflow(task):
st.session_state.outputs.clear()
st.session_state.outputs.append(f"User Input: {task}")
st.session_state.graph_image = None
for state in graph.stream({"messages": [HumanMessage(content=task)]}):
if "__end__" not in state:
st.session_state.outputs.append(str(state))
st.session_state.outputs.append("----")
if st.button("Run Workflow"):
if user_input:
run_workflow(user_input)
else:
st.warning("Please enter a task or question.")
st.subheader("Workflow Output:")
for output in st.session_state.outputs:
st.text(output)
if "graph_image" in st.session_state and st.session_state.graph_image:
st.subheader("Generated Graph:")
st.image(st.session_state.graph_image, caption="Generated Line Graph", use_column_width=True)
|