Update interim.py
Browse files- interim.py +10 -3
interim.py
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
import os
|
|
|
2 |
import streamlit as st
|
3 |
from dotenv import load_dotenv
|
4 |
from langchain_openai import ChatOpenAI
|
@@ -6,7 +7,7 @@ from langchain.agents import AgentExecutor, create_openai_tools_agent
|
|
6 |
from langchain_core.messages import BaseMessage, HumanMessage
|
7 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
8 |
from langchain_experimental.tools import PythonREPLTool
|
9 |
-
from langchain_community.document_loaders import DirectoryLoader
|
10 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
from langchain_community.vectorstores import Chroma
|
12 |
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
@@ -15,10 +16,15 @@ from langchain_core.runnables import RunnablePassthrough
|
|
15 |
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
|
16 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
17 |
from langgraph.graph import StateGraph, END
|
|
|
18 |
from typing import Annotated, Sequence, TypedDict
|
19 |
-
from langchain_core.tools import tool
|
20 |
import functools
|
21 |
import operator
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
# Load environment variables
|
24 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
@@ -47,6 +53,7 @@ def agent_node(state, agent, name):
|
|
47 |
|
48 |
@tool
|
49 |
def RAG(state):
|
|
|
50 |
st.session_state.outputs.append('-> Calling RAG ->')
|
51 |
question = state
|
52 |
template = """Answer the question based only on the following context:\n{context}\nQuestion: {question}"""
|
@@ -72,7 +79,7 @@ if uploaded_files:
|
|
72 |
docs = []
|
73 |
for uploaded_file in uploaded_files:
|
74 |
content = uploaded_file.read().decode("utf-8")
|
75 |
-
docs.append(
|
76 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10, length_function=len)
|
77 |
new_docs = text_splitter.split_documents(documents=docs)
|
78 |
embeddings = HuggingFaceBgeEmbeddings(model_name="BAAI/bge-base-en-v1.5", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|
|
|
1 |
import os
|
2 |
+
import chromadb
|
3 |
import streamlit as st
|
4 |
from dotenv import load_dotenv
|
5 |
from langchain_openai import ChatOpenAI
|
|
|
7 |
from langchain_core.messages import BaseMessage, HumanMessage
|
8 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
9 |
from langchain_experimental.tools import PythonREPLTool
|
10 |
+
from langchain_community.document_loaders import DirectoryLoader
|
11 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
12 |
from langchain_community.vectorstores import Chroma
|
13 |
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
|
|
16 |
from langchain.output_parsers.openai_functions import JsonOutputFunctionsParser
|
17 |
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
|
18 |
from langgraph.graph import StateGraph, END
|
19 |
+
from langchain_core.documents import Document
|
20 |
from typing import Annotated, Sequence, TypedDict
|
|
|
21 |
import functools
|
22 |
import operator
|
23 |
+
from langchain_core.tools import tool
|
24 |
+
|
25 |
+
|
26 |
+
# Clear ChromaDB cache to fix tenant issue
|
27 |
+
chromadb.api.client.SharedSystemClient.clear_system_cache()
|
28 |
|
29 |
# Load environment variables
|
30 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
|
|
53 |
|
54 |
@tool
|
55 |
def RAG(state):
|
56 |
+
"""Use this tool to execute RAG. If the question is related to Japan or Sports, this tool retrieves the results."""
|
57 |
st.session_state.outputs.append('-> Calling RAG ->')
|
58 |
question = state
|
59 |
template = """Answer the question based only on the following context:\n{context}\nQuestion: {question}"""
|
|
|
79 |
docs = []
|
80 |
for uploaded_file in uploaded_files:
|
81 |
content = uploaded_file.read().decode("utf-8")
|
82 |
+
docs.append(Document(page_content=content, metadata={"name": uploaded_file.name}))
|
83 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10, length_function=len)
|
84 |
new_docs = text_splitter.split_documents(documents=docs)
|
85 |
embeddings = HuggingFaceBgeEmbeddings(model_name="BAAI/bge-base-en-v1.5", model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': True})
|