Spaces:
Sleeping
Sleeping
Create build_rag.py
Browse files- utils/build_rag.py +55 -0
utils/build_rag.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.vectorstores import Chroma
|
2 |
+
from langchain_community.document_loaders import PyPDFLoader, PyPDFDirectoryLoader
|
3 |
+
from langchain.text_splitter import CharacterTextSplitter,TokenTextSplitter
|
4 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
5 |
+
from dotenv import load_dotenv
|
6 |
+
import os
|
7 |
+
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
class RAG:
|
11 |
+
def __init__(self) -> None:
|
12 |
+
self.pdf_folder_path = os.getenv('SOURCE_DATA')
|
13 |
+
self.emb_model_path = os.getenv('EMBED_MODEL')
|
14 |
+
self.emb_model = self.get_embedding_model(self.emb_model_path)
|
15 |
+
self.vector_store_path = os.getenv('VECTOR_STORE')
|
16 |
+
|
17 |
+
def load_docs(self,path:str) -> PyPDFDirectoryLoader:
|
18 |
+
loader = PyPDFDirectoryLoader(path)
|
19 |
+
docs = loader.load()
|
20 |
+
return docs
|
21 |
+
|
22 |
+
def get_embedding_model(self,emb_model) -> HuggingFaceBgeEmbeddings :
|
23 |
+
model_kwargs = {'device': 'cpu'}
|
24 |
+
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
|
25 |
+
embeddings_model = HuggingFaceBgeEmbeddings(
|
26 |
+
model_name=emb_model,
|
27 |
+
model_kwargs=model_kwargs,
|
28 |
+
encode_kwargs=encode_kwargs,
|
29 |
+
)
|
30 |
+
return embeddings_model
|
31 |
+
|
32 |
+
def split_docs(self,docs)-> TokenTextSplitter:
|
33 |
+
text_splitter = TokenTextSplitter(chunk_size=500, chunk_overlap=0)
|
34 |
+
documents = text_splitter.split_documents(docs)
|
35 |
+
return documents
|
36 |
+
|
37 |
+
def populate_vector_db(self) -> None:
|
38 |
+
# load embeddings into Chroma - need to pass docs , embedding function and path of the db
|
39 |
+
|
40 |
+
self.doc = self.load_docs(self.pdf_folder_path)
|
41 |
+
self.documents = self.split_docs(self.doc)
|
42 |
+
|
43 |
+
db = Chroma.from_documents(self.documents,
|
44 |
+
embedding=self.emb_model,
|
45 |
+
persist_directory=self.vector_store_path)
|
46 |
+
|
47 |
+
db.persist()
|
48 |
+
|
49 |
+
def load_vector_db(self)-> Chroma:
|
50 |
+
#to load back the embeddings from disk
|
51 |
+
db = Chroma(persist_directory=self.vector_store_path,embedding_function=self.emb_model)
|
52 |
+
return db
|
53 |
+
|
54 |
+
def get_retriever(self) -> Chroma:
|
55 |
+
return self.load_vector_db().as_retriever()
|