File size: 3,364 Bytes
7054888
 
 
 
737e35e
7054888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737e35e
 
 
 
 
 
7054888
737e35e
 
 
 
7054888
737e35e
7054888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
737e35e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import os
import json
import operator
import streamlit as st
import tempfile
from typing import TypedDict, Annotated, Sequence
from langchain_openai import ChatOpenAI
from langchain_core.tools import tool
from langchain_core.utils.function_calling import convert_to_openai_tool
from langgraph.graph import StateGraph, END

# Environment Setup
os.environ['OPENAI_API_KEY'] = os.getenv("OPENAI_API_KEY")

# Model Initialization
model = ChatOpenAI(temperature=0)

@tool
def multiply(first_number: int, second_number: int):
    """Multiplies two numbers together and returns the result."""
    return first_number * second_number

model_with_tools = model.bind(tools=[convert_to_openai_tool(multiply)])

# State Setup
class AgentState(TypedDict):
    messages: Annotated[Sequence, operator.add]

graph = StateGraph(AgentState)

def invoke_model(state):
    question = state['messages'][-1]
    return {"messages": [model_with_tools.invoke(question)]}

graph.add_node("agent", invoke_model)

def invoke_tool(state):
    tool_calls = state['messages'][-1].additional_kwargs.get("tool_calls", [])
    for tool_call in tool_calls:
        if tool_call.get("function").get("name") == "multiply":
            res = multiply.invoke(json.loads(tool_call.get("function").get("arguments")))
            return {"messages": [f"Tool Result: {res}"]}
    return {"messages": ["No tool input provided."]}

graph.add_node("tool", invoke_tool)
graph.add_edge("tool", END)
graph.set_entry_point("agent")

def router(state):
    calls = state['messages'][-1].additional_kwargs.get("tool_calls", [])
    return "multiply" if calls else "end"

graph.add_conditional_edges("agent", router, {"multiply": "tool", "end": END})
app_graph = graph.compile()

# Save graph visualization as an image
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
    graph_viz = app_graph.get_graph(xray=True)
    tmpfile.write(graph_viz.draw_mermaid_png())  # Write binary image data to file
    graph_image_path = tmpfile.name

# Streamlit Interface
st.title("Simple Tool Calling Demo")

# Display the workflow graph
st.image(graph_image_path, caption="Workflow Visualization")

tab1, tab2 = st.tabs(["Try Multiplication", "Ask General Queries"])

with tab1:
    st.subheader("Try Multiplication")
    col1, col2 = st.columns(2)

    with col1:
        first_number = st.number_input("First Number", value=0, step=1)
    with col2:
        second_number = st.number_input("Second Number", value=0, step=1)

    if st.button("Multiply"):
        question = f"What is {first_number} * {second_number}?"
        output = app_graph.invoke({"messages": [question]})
        st.success(output['messages'][-1])

with tab2:
    st.subheader("General Query")
    user_input = st.text_input("Enter your question here")

    if st.button("Submit"):
        if user_input:
            try:
                result = app_graph.invoke({"messages": [user_input]})
                st.write("Response:")
                st.success(result['messages'][-1])
            except Exception as e:
                st.error("Something went wrong. Try again!")
        else:
            st.warning("Please enter a valid input.")


st.sidebar.title("References")
st.sidebar.markdown("1. [LangGraph Tool Calling](https://github.com/aritrasen87/LLM_RAG_Model_Deployment/blob/main/LangGraph_02_ToolCalling.ipynb)")